CS 2316 Data Manipulation
XML
R B

Christopher Simpkins
chris.simpkins@gatech.edu

mailto:chris.simpkins@gatech.edu

... Extensible Markup Language (XML,),,

A W3C standard for document
markup

1 Used for web pages, data
iInterchange, configuration files,
remote procedure calls, object
serialization,

1 All examples in this lecture come
directly from, or are adapted from
O’Reilly’s XML in a Nutshell

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 07: XML

XML

O'REILLY"

XML in a Nutshell, 3ed, Elliotte
Rusty Harold and W. Scott Means

o Benefits of XML o

1 Human-readable plain text
— Caveat: XML primarily for machines to read and write

1 Extensible: XML is a metamarkup language in which
you can define custom tag sets for your domain
— Customized tag sets are called XML applications

7 XML tag sets can be designed to represent semantics,
with presentation separated into style sheets

1 With a schema or DTD, XML documents can be
machine validated, greatly facilitating interoperability

— Validity includes well-formedness, completeness, data type
consistency

0 XML is NOT a programming language

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 07: XML I I I

o Simple XML Example .

<person>
Alan Turing
</person>

This is a simple, yet complete XML
document. It could be stored in a
file called person.xml, or be stored
in a file that contains several XML
documents, or be automatically
generated from a database query.

 Elements are marked up with
tags.

“ Here, <person> is start tag and
</person> is end tag, which
denote the person element.

 The character data between the
start and end tags are the
element’s content

) Tags are case-sensitive
<person> != <Person>

1 An empty person element could
be written <person></
person> Or <person/>

ASE 6121 Information Systems, Lecture 07: XML I I

Copyright © Georgia Tech. All Rights Reserved.

XML Tree Structure

<person>
<name>
<first_name>Alan</first_name>
<last_name>Turing</last_name>
</name>
<profession>computer scientist</profession>
<profession>mathematician</profession>
<profession>cryptographer</profession>
</person>

person

!
v v v .

name prafessicn prodession profession

—]

Georgia

" Nesting elements create
a tree structure

4 Every XML document
has a document root,
which in this example is
person

" person Is the parent of
the name element and
the three profession
elements, which are
children of the person
element

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 07: XML I I

Mixed Content

H B Gom A o
e ™ Previous XML

<name><first_name>Alan</first_name> <last_name>Turing</last_name>
</name> was one of the first people to truly deserve the name
<emphasize>computer scientist</emphasize>. Although his
contributions to the field are too numerous to list, his
best-known are theeponymous <emphasize>Turing Test</emphasize> and
<emphasize>Turing Machine</emphasizes.

</paragraph>

<definition>The <term>Turing Test</term> is to this day the standard
test for determining whether a computer is truly intelligent. This
test has yet to be passed. </definition>

<definition>A <term>Turing Machine</term> is an abstract finite
state cutomaton with infinite memory that can be proven equivalent
to any other finite state cutomaton with arbitrarily large

memory. Thus what is true for one Turing machine is true for all
Turing machines no matter how implemented. </definition>

<paragraph>
<name><last_name>Turing</last_name></name> was also an
accomplished <profession>mathematician</profession> and
<professionscryptographer</profession>. His assistance was crucial
in helping the Allies deccde the German Enigma cipher. He
committed suicide on <date><amontheJune</monthy> <day>7</day>,
<year>1954</year></date> after being convicted of homosexuality
and forced to take female hormone injections.

</paragraph>

</biography>

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 07: XML

example, and most
we’ll deal with, are
record-like data
structures

Narrative documents
can also be marked
up with XML, which
IS sometimes called
“mixed content”

XML Attributes coora

<p§{zzﬁﬂ;{£“1912%“23" lied="1954-06-07"> [¥] |nf0rmati0n can be

</person represented as attributes

<person born="1912-06-23" died="1954-06-07"> .
cname First="Alan" last="Turing"/>) Attributes are encoded as
<profession value="computer scientist"/> . .
<profession valu -:'rﬂ]ati.wf-ﬂ’:r::‘iciqrw::/> name:"value " pa"'S IN an
<profession value="cryptographer"/>

</person> element’s start tag

Person data modeled with attributes.

<length ="cm”>100</length>

units is metadata, so we model it with an attribute.

 Model data with elements or
attributes?
— Up to you
— My advice (which is the standard

advice): use elements for your
data, attributes for metadata

— Not often clear what’s data and
what’s metadata

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 07: XML I I

R XML Names cocrot

4 Elements and attributes have names

I Names may contain any alphabetic character from
any language, digits, and
— underscores ()
— hyphens (-)
— periods (.)

1 May not contain quotation marks, apostrophes, dollar
signs, carets, percent symbols, and semicolons

 Names must start with underscore or alphabetic
character

Names starting with XML (in any case) are reserved for
W3C XML-related specs

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 07: XML I I

- XML Name Examples Gosrt

1 Acceptable names:
— <Drivers License Number>98 NY 32</Drivers License Number>
— <month-day-year>7/23/2001</month-day-year>
— < 4-lane>I-610</ 4-lane>
— <téléphone>011 33 91 55 27 55 27</téléphone>

— <nmepcha>[anhaoNbahob</mepcha>

) Not acceptable names:
— <Driver's License Number>98 NY 32</Driver's License Number>
— <month/day/year>7/23/2001</month/day/year>

— <first name>Alan</first name>

— <4-lane>I-610</4-lane>

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 07: XML I I

o Entity References onrt

1 Angle brackets (<>) and ampersand (&) are reserved for
XML syntax, so you can't include these characters in your
character data (element content and attribute values)

0 XML provides 5 predefined entity references:

— &1t ; The less-than sign, a.k.a. the opening angle bracket (<)
— & The ampersand (&)

— > The greater-than sign, a.k.a. the closing angle bracket (>)
— " The straight, double quotation marks (")

— ' The apostrophe, a.k.a. the straight single quote ()

1 Only < and & are strictly necessary, others
provided for symmetry

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 07: XML I I I

- Entity Reference Examples ...

<SCRIPT LANGUAGE="JavaScript">
i1f (location.host.toLowerCase().indexOf("ibiblio") < @) {
location.href="http://ibiblio.org/xml/";

}
</SCRIPT>

Here, the < symbol in the boolean expression is represented by the < entity reference.
<company>W.L. Gore &Zamp; Associates</company>

Here, the & symbol in the element content is represented with the & entity reference.
<company>W.L. Gore & Associates</company>

This is equivalent to the second example above. You can use entity references to represent
any Unicode 2.0 code point (38 is ampersand). Note that XML 1.1 will support Unicode 3.0.

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 07: XML

CDATA and Comments

- ¥ Sometimes using entity

You can use a default <code>xmlns</code> attribute

to avoid havingto add the svg prefix to all your references can be ted|0us,

elements:

Georgia
Tech

<P such as when your element

Qroaal - content is an X/HTML code

O dthart2cn hetght="t0em"> snippet

<ellipse‘ = 11(5:1“ =1c’> ’ /> . o . .

et xmtenty=nantwar=nsent rewane=reen . A CDATA section contains

res raw character data
surrounded by <! [CDATA|
and 11>

1 Only character sequence
disallowed in a CDATA

sectionis 11>

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 07: XML I I

- Processing Instructions —

<?robots index="yes" follow="no"?> W} Enclosed |n <f) and r)>
2ph 4 Away to pass
mysql_connect("database.unc.edu”, "clerk", "password"); . -
Sresult = mysql(HE' (:b?b;CtLT tasth{gﬂ:,(ki"sggzieo) InfOrmatIOn to a

” EROO?? Employees ORDER BY LastName, FirstName"); SpeCiﬁC (kind Of) XML

while (S1 < mysql_numrows (Sresult)) {

$fields = mysql_fetch_row(Sresult); processor

echo "<person>$fields[1] $fields[@] </person>\r\n";
Si++; . .
) 7 Most common uses:

mysql_close();

> — embedded
programming language

<?xml-stylesheet href="person.css" type="text/css"?> (3()(153
<person>
Alan Turing
</person> — Style SheetS

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 07: XML I

Georgia

o XML Declaration -

1 Very beginning of an XML document. Optional, but
should be there
1 Example:
— <?xml version="1.0" encoding="ASCII" standalone="yes"?>
¥ Three attributes:
— Version should always be 1.0

— Encoding is the character set. Default is UTF-8, which is a
superset of ASCII (so all ASCII text is also UTF-8)

— Standalone says whether the document can be used without

a DTD. Some DTDs provide default values for optional
attributes

7 Version attribute is required, encoding and standalone
attributes are optional

Copyright © Georgia Tech. All Rights Reserved.

ASE 6121 Information Systems, Lecture 07: XML I I

Well-Formedness

Georgia

EE N | Tech

¥ Every start-tag must have a matching end-tag.
v Elements may nest but may not overlap.

7]
7)
1 There must be exactly one root element.
7)
7)

4 Attribute values must be quoted.

{
{
{
{
7 An element may not have two attributes with the

Same name.

0 Comments and processing instructions may not
appear inside tags.

I No unescaped < or & signs may occur in the
character data of an element or attribute.

™ ... and more.

B B | B

R Parsing and Validation ot

4 A parser reads an XML document and places it into a structure
for processing (like a tree data structure - slide 5)

7 A validating parser can validate an XML document while
parsing it if given an external document that specifies the
structure and content of the XML document

0 All XML documents must be well-formed to be parsed, validity
Is optional
1 Validity means conformance to a:
— Document Type Definition (DTD)
— XML Schema Language document (XSD)

— RelaxNG document
— Schematron document

1 DTD and XML schema are most popular. We’ll cover XML
schemas

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 07: XML I I

R Namespaces _—

0 An XML schema or DTD defines a vocabulary for XML
documents, that is, a tag set

7 An XML document can include tags from multiple
vocabularies
— Namespaces resolve conflicts between different vocabularies
7 Namespaces are identified with URIs in the root
element of an XML document. Example:
— <song xmlins="http://songs.com/singerVocab">
1 Namespaces can be given a prefix. Example:
— <song:song xmins="http://songs.com/singerVocab">

— Then elements in document that use tags from song
vocabulary must be prefixed with song:

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 07: XML I I I

. Namespace Example cecrgt

1 In the first example, the
title element name is in

<singer>

SnamesHammer </nanes conflict - it comes form
i teHammer Tine</titles both the singer

</song>

</songs> vocabulary and the
song vocabulary
s e e o e 1 In the second example,
elementFormDefault="qualified"> . .
the conflict is resolved

<s50ng.song>

with namespaces

<singer:titlesM.C.</singer:title>

<singer:name>Hammer</singer:name> (V] Ir] tr]EB E;E}(:C)r](j EE)(EifT]F)IEE,

</singer:singer>

<song:title>Hammer Time</song:title> Eall E}IE}fT]E}f]tES r]Ei\/EB

</song:song>

</song:songs> (]LJEi|ifiEB(j Nnames

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 07: XML I I

XML Schemas ot

© An XML Schema is an XML document containing
formal description of a valid XML document

“ An XML document that conforms to a schema is said
to be schema-valid, or simply valid

“ A valid XML document is called an instance of its
associated schema

Associating an XML Document with a Schema

“ An XML document is associated with a schema with
one of 3 possible methods in the start tag of its root
element:

— An xsi:schemalocation attribute on an element contains a
list of namespaces used within that element and the URLs
of the schemas with which to vali- date elements and
attributes in those namespaces.

— An xsi:noNamespaceSchemal.ocation attribute contains a
URL for the schema used to validate elements that are not
In any namespace.

— A validating parser may be instructed to validate a given
document against an explicitly provided schema, ignoring
any hints that might be provided within the document itself.

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 07: XML I I I

... ASimple XML Schema Example.....

<?xml version="1.0"7>

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="fullName" type="xs:string"/>

</xs:schema>

The schema in address.xsd defines XML documents with one element: name

<?xml version="1.0"7>
<fullName>Scott Means</ful lName>

The document in addresses.xml conforms to the address schema in address.xsd

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 07: XML

Element Declarations

i We've already seen a simple element declaration:
— <xs:element name="fullName" type="xs:string">

4 The simple types that an element may take are:
— anyURI - A uniform resource identifier
— base64Binary - Base64-encoded binary data
— boolean - true, false, 1, or O
— byte - A signed byte in the range [-128, 127]
— dateTime - An absolute date and time

— duration - A length of time in years, months, days, hours, etc.

— ID, IDREF, IDREFS, ENTITY, ENTITIES, NOTATION, NMTOKEN, NMTOKENS -
defined in the attribute declaration section of the W3C XML 1.0 recommendation

— integer
— language - Values defined in the xml:lang attribute in the XML 1.0
recommendation

— Name - Any XML name (see slide 8)
— string - A Unicode string

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 07: XML I I

Attribute Declarations

EE = GOOITb'gc%
<x5:e1emen+1: r'Ttr'e="‘uHNOﬂe"> [¥] HaV|ng attr|bUteS makeS an
<x5:comp ex)’Deient>
<Xi;§}22l:(r:.(s)ri‘(;n base="xs:string"> element CompleXType
<xs:attribute name="language" . .
e e eniase» 11 Elements with simple
</xs:extension>
</xs:simpleContent> content are declared by
</xs:complexType> .
</xs:element> extending a base type, such
A schema declaration for a fullName as xXs: String
element with a language attribute and . _
simple content Extension also contains
attribute declarations
<fullName language="en">Scott Means</fullName> [¥] Can Stl” have Slmple
An XML element conforming to the '
orhen comorn content, as in the example

to the left

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 07: XML I I

. Complex Types cecrgt

<xs:element nane="ful IName"> 4 Complex types can have
<xb.??mp1exType> .
<xi£§?2$§:§iz name="first" type="xs:string"/> Eittht)lJtEBES Ear](j r1€3€5t€3(j
ietenent s AL P e elements
<xs:element name="last" type="xs:string"/>
Lrsiseauences Nested elements are
</xs:elenent> specified as a sequence

A fullName element consisting of nested

elements for first and last names. Notethat Y] Nested elements can

middle name is optional due to minOccurs

constraint of 0 have occurrence
constraints
<fullName> —
e e et In the example to the left,
<last>Myers</last> middle name is optional
</fullName> '
A fullName element conforming to the schema (minOccurs="0")

declaration above

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 07: XML I I

A Complete Example N

<?7xml version="1.0"7>
<xs:schema xmlns:xse"http://ww.w3.0rg/2001/XMLSchema”>

<xs:element names="person">
<xs:complexType>
<XS:sequence>

<xs:element name="fullName">
<xs:complexType>
<xs:sequence>
<xs:element name="first" type="xs:string"/>
<xs:element name="middle" type="xs:string”
minOccurs="0"/>
<xs:element name="last" type="xs:string”/>
</xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="profession" minOccurs="1"

AN~ o~

max0ccurs="unbounded” />
</xs:s5equence>
</xs:complexType>
</xs:element>

</x5:schema>

person.xsd

<?xml version="1.0"7>

<person xmlns:xsi="http://ww.w3.0rqg/2001/XMLSchema-instance”
s1:noNamespaceSchemalocation="person.xsd">
<fullName>
<first>Alan</first>
<last>Turing</last>
</fullName>
<profession>Mathematician</profession>
<profession>Computer Scientist</profession>
<profession>Cryptographer</profession>
</person>

alanturing.xml

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 07: XML

R XML Parsing ot

1 CSV files are simply structured text-based data files

7 XML files are more highly structured text-based data files, allowing
nested, or “tree” structured data to be represented in text

 An XML Parser reads an XML file and extracts its structure. Three
kinds of XML parsers:

— SAX (Simple API for XML): a state machine that produces events for each
element read from an XML file. Parser responds to events to process these
elements

— DOM (Document Object Model): the DOM standard specifies an object-tree
representation of an XML document

» Tip: In Google Chrome you can see the DOM tree of any web page by
clicking View->Developer->Developer Tools in the menu and clicking the
Elements tab in the lower pane. Expand elements of the DOM tree and
cursor over them to see the rendered parts of the page they represent. In
FireFox you can install a plug-in to do the same thing

1 We'll use ElementTree, which is essentially a Python-specific DOM
parser

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 14: Python 10 and Database APIs [. |

ElementTree

Georgia
Tech

) An ElementTree is a representation of an XML
document as a tree of Element objects with easy to
use methods:

— parse(“fileName”) reads an XML file and create an
ElementTree representation of its document

— find(“elementName”) gets a single child of an element

— findall(“elementName”) gets an iterator over the like-
named children of an element

i That's it. Really. It's that simple.

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 14: Python 10 and Database APIs [. |

A Complete XML Parsing Example. .

Tech

1 Say we have an XML file named people.xml

<?xml version="1.0"?>

<people>
<person>
<firstName>Alan</firstName>
<lastName>Turing</lastName>
<profession>Computer Scientist</profession>
</person>
<person>
<firstName>Stephen</firstName>
<lastName>Hawking</lastName>
<profession>Physicist</profession>
</person>
</people>

9 Our XML document will have a root element named people and
child elements named person

1 Each person element will have three child elements named
firstName, lastName, and profession

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 14: Python IO and Database APIls I

. Parsing with Elementiree ...

1 Parsing people.xml with ElementTree is this easy:

>>> import xml.etree.ElementTree as et

>>> people = et.parse("people.xml")

>>> persons = people.findall("person")

>>> for person in persons:
print (person.find(“firstName”).text)
print (person.find(”lastName”).text)
print(person.find(“profession”).text)

Alan

Turing

Computer Scientist

Stephen

Hawking

Physicist

>>>

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 14: Python IO and Database APIls I

- -

Conclusion

| D B EE———— | MQ%

0 XML makes a great data format for information
exchange

1 Validation is important when passing XML data form
one system to another

“ You now know how to write well-formed XML

 You now know how to read a simple XML schema
and write an XML document that conforms to it

0 We've only introduced XML schemas; there’s much
more to know

) Parsing XML in Python is super easy

B B | E§

