
Advanced SQL

1 / 23

NULL

The special value NULL could mean:

I Unknown
I Unavailable
I Not Applicable

2 / 23

Three-Valued Logic - AND

AND TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN

3 / 23

Three-Valued Logic - OR

OR TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN

4 / 23

Three-Valued Logic - NOT

NOT TRUE
TRUE FALSE
FALSE TRUE
UNKNOWN UNKNOWN

5 / 23

Comparisons with NULL Values

Each NULL is distinct, so comparisons with <, >, and = don’t make
sense.
To compare with null, use SQL operator IS, e.g., "Which books don’t
have editors?":
SELECT * FROM book WHERE editor IS NULL;

Inner joins include only tuples for which the join condition evaluates to
TRUE.

6 / 23

The IN Operator

mysql > select * from book where month in (’April ’, ’July’);
+---------+------------+-------+------+--------+
| book_id | book_title | month | year | editor |
+---------+------------+-------+------+--------+
1	CACM	April	1960	8
2	CACM	July	1974	8
3	BST	July	1948	2
7	AAAI	July	2012	9
8	NIPS	July	2012	9
+---------+------------+-------+------+--------+
5 rows in set (0.00 sec)

7 / 23

Nested Queries, a.k.a., Sub-Selects

List all the books published in the same month in which an issue of
CACM was published.
mysql > select book_title , month

-> from book
-> where month in (select month
-> from book

where book_title = ’CACM’);
+------------+-------+
| book_title | month |
+------------+-------+
CACM	April
CACM	July
BST	July
AAAI	July
NIPS	July
+------------+-------+
5 rows in set (0.00 sec)

8 / 23

Extended Example 1: Which dorms have fewer occupants
than Caldwell?

Step 1: how many occupants in Caldwell?
mysql > select count (*) as caldwell_occupancy

-> from dorm join student using(dorm_id)
-> where dorm.name = ’caldwell ’;

+--------------------+
| caldwell_occupancy |
+--------------------+
| 4 |
+--------------------+
1 row in set (0.00 sec)

9 / 23

Occupancy Less than Caldwell

Now we use the previous "caldwell_occupancy" query as a subquery.
mysql > select dorm.name as dorm_name , count (*) as occupancy

-> from dorm join student using (dorm_id)
-> group by dorm_name
-> having occupancy < (select count (*) as caldwell_occupancy
-> from dorm join student using(dorm_id)
-> where dorm.name = ’caldwell ’);

+-----------+-----------+
| dorm_name | occupancy |
+-----------+-----------+
| Armstrong | 3 |
| Brown | 3 |
+-----------+-----------+
2 rows in set (0.00 sec)

Notice that we couldn’t use a where clause here because occupancy is
computed from a group, which isn’t available at the WHERE stage of the
SQL SELECT pipeline.

10 / 23

Extended Example 2: Which dorm has the highest average
GPA?

I Step 1: Group students and their GPAs by dorm.
I Step 2: Get the average GPAs of each dorm.
I Step 3: Get the max avg GPA from step 2.

11 / 23

Step 1: Group students and their GPAs by dorm

mysql > select dorm.name as dorm_name , student.name as student_name ,
gpa
-> from dorm join student using (dorm_id)
-> group by dorm_name , student_name , gpa;

+-----------+--------------+------+
| dorm_name | student_name | gpa |
+-----------+--------------+------+
Armstrong	Alice	3.6
Armstrong	Bob	2.7
Armstrong	Cheng	3.9
Brown	Dhruv	3.4
Brown	Ellie	4
Brown	Fong	2.3
Caldwell	Gerd	4
Caldwell	Hal	2.2
Caldwell	Isaac	2
Caldwell	Jacque	5
+-----------+--------------+------+
10 rows in set (0.00 sec)

12 / 23

Step 2: Get the average GPAs of each dorm.

mysql > select dorm.name as dorm_name , avg(gpa) as average_gpa
-> from dorm join student using (dorm_id)
-> group by dorm_name;

+-----------+--------------------+
| dorm_name | average_gpa |
+-----------+--------------------+
Armstrong	3.400000015894572
Brown	3.2333333492279053
Caldwell	3.300000011920929
+-----------+--------------------+
3 rows in set (0.00 sec)

13 / 23

Step 2.1 Formatting Numeric Values

mysql > select dorm.name as dorm_name , format(avg(gpa), 2) as
average_gpa
-> from dorm join student using (dorm_id)
-> group by dorm_name;

+-----------+-------------+
| dorm_name | average_gpa |
+-----------+-------------+
Armstrong	3.40
Brown	3.23
Caldwell	3.30
+-----------+-------------+
3 rows in set (0.01 sec)

14 / 23

FORMAT(x,d[,locale])

I Formats the number x to d decimals using a format like
’nn,nnn.nnn’ and returns the result as a string. If d is 0, the result
has no decimal point or fractional part.

I locale defaults to the value of the lc_time_names system variable.

mysql > select @@lc_time_names;
+-----------------+
| @@lc_time_names |
+-----------------+
| en_US |
+-----------------+
1 row in set (0.00 sec)

15 / 23

Step 3: Get max average gpa from average gpa results.

Using a nested query:
mysql > select dorm_name , max(average_gpa) as max_average_gpa

-> from (select dorm.name as dorm_name , format(avg(gpa), 2) as
average_gpa

-> from dorm join student using (dorm_id)
-> group by dorm_name) as avg_gpas;

+-----------+-----------------+
| dorm_name | max_average_gpa |
+-----------+-----------------+
| Armstrong | 3.40 |
+-----------+-----------------+
1 row in set (0.00 sec)

16 / 23

Semantic Constraints

The relational model can only encode:

I Domain constraints
I Key constraints
I Foreign key constraints

We call constraints on arbitrary values in tuples within and between
relations semantic constraints.
While the relational model has no concept of semantic constraints, SQL
can handle semantic constraints with assertions and triggers.

17 / 23

Assertions

CREATE ASSERTION <assertion -name >
CHECK (<condition >)

<condition> can be any SQL staetment that evaluates to TRUE,
FALSE or UNKNOWN. Any databases INSERT or UPDATE that couses
the <condition> to be FALSE is rejected by the database engine.
While CREATE ASSERTION is part of the SQL standard, no major
DBMS today (including MySQL) implements assertions.

18 / 23

Triggers

A trigger is a piece of SQL code associated with a table that executes
when an event occurs on the table.
A trigger can’t directly prevent an INSERT or UPDATE from occuring
due to a semantic oncstraint violation, but a trigger can modify values
being inserted or pudated to avoid the violation or log the violation in a
message table or execute a stored procedure or external program.

19 / 23

The Three-Schema Architecture

Remember the three-schema architecture?

20 / 23

Views

mysql > create view cacm_issues as
-> select * from book
-> where book_title = ’CACM’;

Query OK , 0 rows affected (0.00 sec)

The CREATE VIEW statement is the mapping between the internal
schema (base tables) and the external schema(s) (derived tables).
They’re all part of the database:
mysql > show tables;
+----------------+
| Tables_in_pubs |
+----------------+
| author |
| author_pub |
| book |
| cacm_issues |
| pub |
+----------------+
5 rows in set (0.00 sec)

21 / 23

A View is Like a Table

You can get data from the table:
mysql > select * from cacm_issues;
+---------+------------+-------+------+--------+
| book_id | book_title | month | year | editor |
+---------+------------+-------+------+--------+
| 1 | CACM | April | 1960 | 8 |
| 2 | CACM | July | 1974 | 8 |
+---------+------------+-------+------+--------+
2 rows in set (0.00 sec)

And you can update data in the view, which modifies the underlying base
tables.

22 / 23

Users and Permissions

The value of external schemas is that they can give specific users
customized vies of the database. We do this with permissions:

23 / 23

	Advanced SQL

