
Relational Design

1 / 34

Relational Design

I Basic design approaches.
I What makes a good design better than a bad design?
I How do we tell we have a "good" design?
I How to we go about creating a good design?

2 / 34

Basic Design Approaches

I Bottom-up, a.k.a. synthethis
I Start with individual attributes and large set of binary relationships

among attributes
I Unpopular

I Top-down, a.k.a. analysis
I Start with groupings of attributes, e.g., a schema derived from

ER-relational mapping
I Decompose until design properties are met

3 / 34

Relational Design Desiderata

1. The sematics of relation schemas and their attributes should be clear
2. There should be little or no redundant information in tuples
3. The should be few or no NULL values in tuples
4. It should be impossible to generate spurious (invalid) tuples
5. It should be easy to join tables

4 / 34

Design Goal 1: Cohesive meaning in relational schemas

Not Cohesive:
EMP(Ename, Ssn, Bdate, Address, Dno, Dno, Dname, Dmgr_ssn)

I Attributes of employees and attributes of departments
I What does a single tuple represent?

Cohesive:
EMP(Ename, Ssn, Bdate, Address, Dno)
DEPT(Dno, Dname, Dmgr_ssn)

I Each EMPT tuple represents a single employee
I Each DEPT tuple represents a single department

5 / 34

Design Goal 2: Minimize Redundancy

Redundant information in schemas:

I wastes storage space, and
I leads to data manipulation anomalies.

One way to think of schemas with redundancy: they are joined tables
from well-designed schemas.
Redundancy leads to data manipulation anomalies . . .

6 / 34

Redundancy leads to Insertion Anomalies

Ssn Ename Bdate Addr Dmanaged Dno Dname
123 Alice 1990 ATL 1 1 Research
124 Bob 1991 BOS NULL 1 Research
125 Cheng 1992 CHS NULL 1 Research
126 Drhuv 1993 DET 2 2 Engineering
127 Earl 1994 EWR NULL 2 Engineering

Every time we insert a new employee, we have to repeat the department
information.

7 / 34

Redundancy leads to Deletion Anomalies

Ssn Ename Bdate Addr Dmanaged Dno Dname
123 Alice 1990 ATL 1 1 Research
124 Bob 1991 BOS NULL 1 Research
125 Cheng 1992 CHS NULL 1 Research
126 Drhuv 1993 DET 2 2 Engineering
127 Earl 1994 EWR NULL 2 Engineering

If we delete the last member of a department, we lose the information
about the department itself. Does it cease to exist?

8 / 34

Redundancy leads to Update (Modification) Anomalies

Ssn Ename Bdate Addr Dmanaged Dno Dname
123 Alice 1990 ATL 1 1 Research
124 Bob 1991 BOS NULL 1 Research
125 Cheng 1992 CHS NULL 1 Research
126 Drhuv 1993 DET 2 2 Engineering
127 Earl 1994 EWR NULL 2 Engineering

If we change the name of the Research department to the "Playing with
lasers" department, we have to change multiple tuples.

9 / 34

Design Goal 3: Minimize Nulls in Tuples

Ssn Ename Bdate Addr Dmanaged Dno Dname
123 Alice 1990 ATL 1 1 Research
124 Bob 1991 BOS NULL 1 Research
125 Cheng 1992 CHS NULL 1 Research
126 Drhuv 1993 DET 2 2 Engineering
127 Earl 1994 EWR NULL 2 Engineering

Bad design: Dmanaged has many nulls because most employees aren’t
managers.

10 / 34

Design Goal 3: Minimize the need for NULL values in tuples

I Nulls don’t have definite meaning - could be absent, N/A, false
I Aren’t used in joins
I Aren’t counted in aggregate functions
I Waste space

We reduce NULLS by normalization using functional dependency theory.

11 / 34

Design Goal 4: Avoid Spurious Tuples

Say we have a relation state r(R) =

student course instructor
Narayan Database Mark
Narayan Operating Systems Ammar
Smith Database Navathe
Smith Operating Systems Ammar
Smith Theory Schulman
Wallace Database Mark
Wallace Operating Systems Ahamad
Wong Database Omiecinski
Zelaya Database Navathe

12 / 34

Bad Decomposition

r(R1) =

student instructor
Narayan Ammar
Narayan Mark
Smith Ammar
Smith Navathe
Smith Schulman
Wallace Ahamad
Wallace Mark
Wong Omiecinski
Zelaya Navathe

r(R2) =

student course
Narayan Database
Narayan Operating Systems
Smith Database
Smith Operating Systems
Smith Theory
Wallace Database
Wallace Operating Systems
Wong Database
Zelaya Database

We would join on student and
end up with . . .

13 / 34

Join with Spurious Tuples

student course instructor
Narayan Database Ammar
Narayan Database Mark
Narayan Operating Systems Ammar
Narayan Operating Systems Mark
Smith Database Ammar
Smith Database Navathe

. . . and 13 more tuples, which is way more tuples than the original
relation due to spurious tuples, so the join is not non-additive.
Lost the association between Instructor and Course. E.g., Mark does not
teach Operating Systems.

14 / 34

Design Goal 5: Design relation schemas for natural joins

Design relation schemas to be naturally joined on attributes that are
related by foreign key-primary key relationships.

EMP(Ename, Ssn, Bdate, Address, Dno)

DEPT(Dno, Dname, Dmgr_ssn)

I Join on Dno tells us an employee’s department
I Acheived by normalization based on functional dependency theory -

foreign keys reference primary keys.

15 / 34

Functional Dependencies

A generalization of superkeys.
Given a relation schema R, and subsets of attributes X and Y , the
functional dependency

X → Y

Means that for any pair of tuples t1 and t2 in r(R)

if t1[X] = t2[X]
then t1[Y] = t2[Y]

In other words, whenever the attributes on the left side of a functional
dependency are the same for two tuples in the relation, the attributes on
the right side of the functional dependency will also be equal.

16 / 34

Relations Satisfy FDs

A B C D
a1 b1 c1 d1
a1 b2 c1 d2
a2 b2 c2 d2
a2 b2 c2 d3
a3 b3 c2 d4

A→ C is satisfied because no two tuples with the same A value have
different C values.
C → A is not satisfied because
t4 = (a2, b3, c2, d3) and
t5 = (a3, b3, c2, d4)

17 / 34

Satisfying vs. Holding

We say that a functional dependency f holds on a relation if it is not
legal to create a tuple that does not satisfy f . Alternately, we say that a
relation schema (not just a particular state) satisfies a functional
dependency.

name street city
Alice Elm Charlotte
Bob Peachtree Atlanta
Charlie Elm Charlotte

Here street → city is satisifed by this relation state. However, we would
not say that the functional dependency holds, or that the relation schema
satisfies the functional dependency because we know there can be
different cities with the same street names.

18 / 34

Trivial Functional Dependencies

A functional dependency is trivial if it is satisfied by all relations.
Formally, a functional dependency X → Y is trivial if Y ⊆ X
For example:

I A→ A

I AB → A

I AB → B

are trivial.
We don’t write trivial functional dependencies when we enumerate a set
of functional dependencies that hold on a schema for the purposes of
normalization or normal form testing.

19 / 34

Normal Forms

A normal form is a set of conditions based on functional dependencies
that acts as tests for the "goodness" of the design of a relation schema.
Normalization is the process of decomposing existing relation schemas
into new relation schemas that satisfy normal forms for the purpose of:

I minimizing redundancy, and
I minimizing insertion, deletion, and update anomalies

We cover first, second, third, and Boyce-Codd normal forms in this class.
Each higher normal form subsumes the normal forms below it, e.g., a
3NF schema is also in 2NF and 1NF. The normal form of a relation
schema is the highest normal form it satisfies.

20 / 34

First Normal Form (1NF)

Every attribute value is atomic, which is effectively guaranteed by most
RDBMS systems today.
The following relation is not in 1NF:

Dname Dnumber Dmgr_ssn Dlocations
Research 5 333445555 {Bellaire, Sugarland, Houston}
Admin 4 987654321 {Stafford}
HQ 1 888665555 {Houston}

Because Dlocations values are not atomic.

21 / 34

Fixing Non 1NF Schemas

Many ways to fix (see book). Best way is to decompose into two
schemas:

Dname Dnumber Dmgr_ssn
Research 5 333445555
Admin 4 987654321
HQ 1 888665555

Dnumber Dlocation
5 Bellaire
5 Sugarland
5 Houston
4 Stafford
1 Houston

22 / 34

General Definition of 2NF and 3NF

Definitions in previous lecture based on primary key. General definitions
based on all candidate keys.
Remember:

I An attribute is prime if it is part of a candidate key,
I otherwise it is nonprime.

General definition of 2NF: A relation schema R is in 2NF if every
nonprime attribute A in R is fully (not partially) dependent on any key of
R.

23 / 34

A Non-2NF Schema

LOTS(Property_id , County_name, Lot#, Area, Price,
Tax_rate)

I FD1: Property_id → County_name, Lot#, Area, Price, Tax_rate
I FD2: County_name, Lot# → Property_id, Area, Price, Tax_rate
I FD3: County_name → Tax_rate
I FD4: Area → Price

Both Property_id and {County_name, Lot#} are candidate keys. So, by
the general definition of 2NF LOTS is not in 2NF due to FD3, i.e.,
Tax_rate is partially dependent on a candidate key.

24 / 34

2NF Decomposition

LOTS(Property_id , County_name, Lot#, Area, Price, Tax_rate)
becomes
LOTS1(Property_id , County_name, Lot#, Area, Price)

I FD1: Property_id → County_name, Lot#, Area, Price, Tax_rate
I FD2: County_name, Lot# → Property_id, Area, Price, Tax_rate
I FD4: Area → Price

LOTS2(County_name , Tax_rate)

I FD3: County_name → Tax_rate

25 / 34

General Definition of 3NF

A relation schema R is in 3NF if, whenever a nontrivial functional
dependency X → A holds in R, either

I (a) X is a superkey of R, or
I (b) A is a prime attribute of R.

LOTS1(Property_id , County_name, Lot#, Area, Price)

I FD1: Property_id → County_name, Lot#, Area, Price, Tax_rate
I FD2: County_name, Lot# → Property_id, Area, Price, Tax_rate
I FD4: Area → Price

not in 3NF due to FD4. Area is not a superkey and Price is not a prime
attribute. Note that Price is transitively dependent on each candidate key.

26 / 34

3NF Decomposition

LOTS1(Property_id , County_name, Lot#, Area, Price)
becomes
LOTS1A(Property_id , County_name, Lot#, Area)

I FD1: Property_id → County_name, Lot#, Area, Price, Tax_rate
I FD2: County_name, Lot# → Property_id, Area, Price, Tax_rate

and
LOTS1B(Area , Price)

I FD4: Area → Price

27 / 34

Straight to 3NF

Though we present a progression through 2NF to 3NF for historical
reasons, it’s not necessary. Given our origial LOTS
LOTS(Property_id , County_name, Lot#, Area, Price, Tax_rate)

I FD1: Property_id → County_name, Lot#, Area, Price, Tax_rate
I FD2: County_name, Lot# → Property_id, Area, Price, Tax_rate
I FD3: County_name → Tax_rate
I FD4: Area → Price

We see that FD3 and FD4 are problem FDs because neither
County_name nor Area is a superkey.

28 / 34

Decomposition Straight to 3NF

So we can decompose
LOTS(Property_id , County_name, Lot#, Area, Price, Tax_rate)
directly into:
LOTS1A(Property_id , County_name, Lot#, Area)

I FD1: Property_id → County_name, Lot#, Area
I FD2: County_name, Lot# → Property_id, Area

LOTS1B(Area , Price)

I FD4: Area → Price

LOTS2(County_name , Tax_rate)

I FD3: County_name → Tax_rate

29 / 34

Observations of General 3NF Tests

Two types of problematic FDs:

I A nonprime attribute determines another nonprime attribute, giving
rise to a transitive dependency on a key.

I Some subset of a key determines a nonprime attribute, giving rise to
a partial dependencey on a key which violates 2NF.

30 / 34

Boyce-Codd Normal Form (BCNF)

A relation schema R is in BCNF if whenever a nontrivial functional
dependency X → A holds in R, then X is a superkey of R
Note that this is the same as 3NF except that it doesn’t allow any
attributes (even prime attributes) to be determined by non-keys.
General non-BCNF pattern: given R(A,B,C)
and FDs

I AB → C

I C → B

R is in 3NF but not BCNF due to the FD C → B.

31 / 34

BCNF Example 1

Say we add FD5 to LOTS1A(Property_id , County_name, Lot#, Area)

I FD1: Property_id → County_name, Lot#, Area
I FD2: County_name, Lot# → Property_id, Area
I FD5: Area → County_name

And say that Fulton county lots are restriced to 1.1, 1.2, . . . , 2.0 acres
and DeKalb county lots are restricted to 0.5, 0.6, . . . , 1.0 acres.
LOTS1A will have a great deal of redundancy. BCNF doesn’t allow this
schema because of FD5: Area is not a superkey.

32 / 34

BCNF Example 1 Decomposition

LOTS1A(Property_id , County_name, Lot#, Area)
becomes
LOTS1AX(Property_id , Area, Lot#)

I FD1: Property_id → County_name, Lot#, Area

and
LOTS1AY(Area , County_name)

I FD5: Area → County_name

Note that FD2 is lost because its attributes are no longer in the same
relation schema. In general, FDs may not be preservable in BCNF
decompositions.

33 / 34

BCNF Example 2

Given TEACH(Student, Course, Instructor) and

I FD1: {Student, Course} → Instructor
I FD2: Instructor → Course.

FD2 violates BCNF. There are three possible BCNF decompositions:

1. R1(Student , Instructor) and R2(Student , Course)
2. R1(Instructor , Course) and R2(Student , Course)
3. R1(Instructor , Course) and R2(Instructor , Student)

All three decompositions preserve attributes and lose FD1, which is
acceptable as along as the decomposition has the non-additive join
property. Which of these decompositions are good? In the next lecture
we’ll learn how to answer that question.

34 / 34

	Relational Design

