
Relational Databases

Christopher Simpkins 
chris.simpkins@gatech.edu

mailto:chris.simpkins@gatech.edu


ASE 6121 Information Systems, Lecture 08: Relational DatabasesCopyright © Georgia Tech. All Rights Reserved. !2

Relational Databases
 A relational database is a collection of data stored in 

one or more tables 
 A relational database management system (RDBMS) 

is software that stores and updates a relational 
database and provides a query and manipulation 
interface to the data 

 In this lecture we’ll cover 
– the two major RDBMS architectures 
– basic relational database design 
– basic SQL (structured query language) 
– SQLite, one of the RDBMS systems we’ll use in this course 

(SQLite and MySQL)



ASE 6121 Information Systems, Lecture 08: Relational DatabasesCopyright © Georgia Tech. All Rights Reserved.

Client-Server RDBMS
 Server software provides a 

middleware layer between 
the database files and 
client applications 

 Clients typically connect 
through network protocols 

 Lots of configuration 
overhead, but powerful 
security, scalability, 
availability features 

 Examples: MySQL, 
PostgreSQL, Oracle, IBM 
DB2, MS SQL Server

!3



ASE 6121 Information Systems, Lecture 08: Relational DatabasesCopyright © Georgia Tech. All Rights Reserved.

Embedded RDBMS
 RDBMS engine is 

integrated with 
application program 

 Data typically stored in a 
single file 

 No configuration 
 Much simpler, but less 

powerful 
 SQLite is most popular 

example

!4



 Entities are real-world objects to be modeled in the 
database 

 Entities can be related to other entities by 
– one-to-one relationships 
– one-to-many relationships 
– many-to-many relationships 

 A journal can have many articles, but an article can 
appear in only one journal 

 An author can have many articles, and an article can 
have many authors

ASE 6121 Information Systems, Lecture 08: Relational DatabasesCopyright © Georgia Tech. All Rights Reserved.

Relational Database Concepts

!5

JournalArticle
1N

Author
NN



ASE 6121 Information Systems, Lecture 08: Relational DatabasesCopyright © Georgia Tech. All Rights Reserved.

Tables
 Entities are stored in tables (a.k.a. relations) 
 Each row of a table (a.k.a tuple) stores one record 
 Each column of a table stores one attribute per record

!6

pubID title
1 Recursive Functions of Symbolic Expressions and 

Their Computation by Machine
2 The Unix Time-sharing System



ASE 6121 Information Systems, Lecture 08: Relational DatabasesCopyright © Georgia Tech. All Rights Reserved.

Keys
 The primary key of a relation is an attribute or (minimal) set 

of attributes (composite key) that uniquely identifies a record 
– There may be many candidate keys 

 A foreign key links one table to another via the other table’s 
primary key

!7

pubID title venueID

1 Recursive Functions of Symbolic Expressions and Their 
Computation by Machine

1

2 The Unix Time-sharing System 2

venueID booktitle month year
1 Communications of the ACM April 1960

2 Communications of the ACM July 1974



ASE 6121 Information Systems, Lecture 08: Relational DatabasesCopyright © Georgia Tech. All Rights Reserved.

Entity-Relationship Diagrams
 ER diagrams can show attributes, keys, and 

relationships 
 Primary key is underlined 
 Here’s our publication-venue schema depicted in an 

ER diagram:

!8

publication
pubID
title
venueID

venue
venueID
booktitle
month
year

1

N



ASE 6121 Information Systems, Lecture 08: Relational DatabasesCopyright © Georgia Tech. All Rights Reserved.

Many-to-many Relationships 
 Many-to-many relationships modeled with a link table 
 Link table has only foreign keys 
 For example, here’s a link between publications and 

authors (each pub can have many authors, each 
author can have many pubs)

!9

publication
pubID
title
venueID

author
authorID
name

pub_author
pubID
authorID N

NN N



ASE 6121 Information Systems, Lecture 08: Relational DatabasesCopyright © Georgia Tech. All Rights Reserved.

Structured Query Language
 ANSI standard language (SQL92) for interacting with a 

database 
– In practice every RDBMS has extensions 

 Pronounced “ess-que-ell”, though many say “sequel” 
 Declarative command language for creating, inserting 

data into, and getting data from a database 
 Some RDBMSes define an additional imperative 

language for stored procedures 
– Stored procedures should be avoided for two reasons: 

» Stored procedures are not even a little bit portable - they’re 
all RDBMS-specific 

» Stored procedures encourage splitting application logic 
between database and main application code

!10



ASE 6121 Information Systems, Lecture 08: Relational DatabasesCopyright © Georgia Tech. All Rights Reserved.

SQL Data Languages
 SQL has four languages: 

– Data definition language (DDL) for creating, modifying and 
deleting database tables.  Typically run when a database is 
first created, often contained in a script 

– Data manipulation language (DML) for inserting, updating, 
querying, and deleting data from tables 

– Transaction control language (TCL) for creating 
transactions (atomic sequences of commands) 

– Data control language (DCL) for controlling access to 
database resources and setting permissions 

 SQLite does not support DCL.  We’ll deal with DDL 
and DML in this course

!11



ASE 6121 Information Systems, Lecture 08: Relational DatabasesCopyright © Georgia Tech. All Rights Reserved.

CREATE TABLE

!12

CREATE TABLE table_name (!
  column_name column_type column_constraints...,!
  [... ,]!
  table_constraints,!
  [...]!
);

General form

CREATE TABLE parts (!
  part_id INTEGER PRIMARY KEY,!
  stock   INTEGER DEFAULT 0 NOT NULL,!
  desc    TEXT    CHECK( desc != ‘’) -- no empty strings!
);

Example

DROP TABLE table_name deletes a table.



ASE 6121 Information Systems, Lecture 08: Relational DatabasesCopyright © Georgia Tech. All Rights Reserved.

Data Types
 Attributes have data types, a.k.a. domains 
 SQLite is manifest-typed, meaning it can store any type of 

value in any column, but most RDBMSes are statically 
typed 

 SQLite has typed storage classes and type affinities for 
columns (a suggestion to convert data to specified type) 

 SQLite supports the following type affinities: 
– Text - NULL, text, or BLOB 
– Numeric - integers, floats, NULLs, and BLOBs 
– Integer - like numeric, but floats with no fractional part are 

converted to integers 
– Float - like numeric, but integers are converted to floats 
– None - no preference over storage class

!13



ASE 6121 Information Systems, Lecture 08: Relational DatabasesCopyright © Georgia Tech. All Rights Reserved.

INSERT
 Creates new rows in a table 

– INSERT INTO table_name (column_name [, ...]) VALUES 
(new_value [, ...]); 

Can leave off the column names to insert values 
positionally 

Example:

!14

INSERT INTO parts (stock, desc) values (42, “ball bearings”)

By the way, we can leave off the primary key like this because the PK is 
an integer and therefore automatically an autoincrement field



ASE 6121 Information Systems, Lecture 08: Relational DatabasesCopyright © Georgia Tech. All Rights Reserved.

UPDATE
 Modify an existing row in a table 

– UPDATE table_name SET column_name=new_value 
[, ...] WHERE expression!

 Example:

!15

UPDATE parts SET price = 4.25, stock = 75 WHERE part_id = 454;



ASE 6121 Information Systems, Lecture 08: Relational DatabasesCopyright © Georgia Tech. All Rights Reserved.

DELETE
 Delete one or more rows from a single table 

– DELETE FROM table_name WHERE expression; 
 Careful: if no WHERE clause, will delete all rows 
 Example:

!16

DELETE FROM parts WHERE part_id >= 43 AND part_id <= 246;



ASE 6121 Information Systems, Lecture 08: Relational DatabasesCopyright © Georgia Tech. All Rights Reserved.

SELECT
 The big one.  Used to extract data from a database 
 The simple form: 

– SELECT output_list FROM input_table WHERE row_filter;!

 The general form:

!17

SELECT [DISTINCT] select_heading!
  FROM source_tables!
  WHERE filter_expression!
  GROUP BY grouping_expressions!
    HAVING filter_expression!
  ORDER BY ordering_expressions !
  LIMIT count!
    OFFSET count

We’ll go over some examples and keep it simple



ASE 6121 Information Systems, Lecture 08: Relational DatabasesCopyright © Georgia Tech. All Rights Reserved.

Creating and Seeding a Database
 Can run a script with the .read command 
 We’ll use two scripts:  

– create-pubs.sql - will create the database schema 
– seed-pubs.sql - will insert data into the tables 

 Tips: 
– .header on 
– .mode column

!18



ASE 6121 Information Systems, Lecture 08: Relational DatabasesCopyright © Georgia Tech. All Rights Reserved.

create-pubs.sql and seed-pubs.sql

!19

create table if not exists author ( 
  author_id integer primary key, 
  first_name text, 
  last_name text 
); !
create table if not exists author_pub ( 
  author_id integer not null references author(author_id), 
  pub_id integer not null references publication(pub_id), 
  author_position integer not null, -- first author, second, etc? !
  primary key (author_id, pub_id) 
); !
create table if not exists publication ( 
  pub_id integer primary key, 
  title text, 
  venue_id integer not null references venue(venue_id)   
); !
create table if not exists venue ( 
  venue_id integer primary key, 
  booktitle text not null, 
  month text, 
  year integer not null 
); 

insert into author values (1, "John", "McCarthy"); 
insert into author values (2, "Dennis", "Ritchie"); 
insert into author values (3, "Ken", "Thompson"); !
insert into publication values(1, "Recursive Functions of Symbolic ...",1); 
insert into publication values(2, "The Unix Time-sharing System",2); !
insert into author_pub values(1, 1, 1); 
insert into author_pub values(2, 2, 1); 
insert into author_pub values(3, 2, 2); !
insert into venue values(1, "Communications of the ACM", "April", 1960); 
insert into venue values(2, "Communications of the ACM", "July", 1974); 

create-pubs.sql seed-pubs.sql


