IIFIJ ython XML and Database APIs
1 T -

Christopher Simpkins
chris.simpkins@gatech.edu

mailto:chris.simpkins@gatech.edu

Outline

1 XML Parsing
— SAX Parsers

— DOM Parsers

— ElementTree - the Pythonic way
0 Working with databases

— Connections

— Cursors

— Statements

— Transactions

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 14: Python IO and Database APIls

R XML Parsing ot

1 CSV files are simply structured text-based data files

7 XML files are more highly structured text-based data files, allowing
nested, or “tree” structured data to be represented in text

 An XML Parser reads an XML file and extracts its structure. Three
kinds of XML parsers:

— SAX (Simple API for XML): a state machine that produces events for each
element read from an XML file. Parser responds to events to process these
elements

— DOM (Document Object Model): the DOM standard specifies an object-tree
representation of an XML document

» Tip: In Google Chrome you can see the DOM tree of any web page by
clicking View->Developer->Developer Tools in the menu and clicking the
Elements tab in the lower pane. Expand elements of the DOM tree and
cursor over them to see the rendered parts of the page they represent. In
FireFox you can install a plug-in to do the same thing

1 We'll use ElementTree, which is essentially a Python-specific DOM
parser

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 14: Python 10 and Database APIs [. |

ElementTree

Georgia
Tech

) An ElementTree is a representation of an XML
document as a tree of Element objects with easy to
use methods:

— parse(“fileName”) reads an XML file and create an
ElementTree representation of its document

— find(“elementName”) gets a single child of an element

— findall(“elementName”) gets an iterator over the like-
named children of an element

i That's it. Really. It's that simple.

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 14: Python 10 and Database APIs [. |

A Complete XML Parsing Example. .

Tech

1 Say we have an XML file named people.xml

<?xml version="1.0"?>

<people>
<person>
<firstName>Alan</firstName>
<lastName>Turing</lastName>
<profession>Computer Scientist</profession>
</person>
<person>
<firstName>Stephen</firstName>
<lastName>Hawking</lastName>
<profession>Physicist</profession>
</person>
</people>

9 Our XML document will have a root element named people and
child elements named person

1 Each person element will have three child elements named
firstName, lastName, and profession

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 14: Python IO and Database APIls I

- Parsing with Elementiree ...

1 Parsing people.xml with ElementTree is this easy:

- -

>>> import xml.etree.ElementTree

>>> people = xml.etree.ElementTree.parse("people.xml")

>>> persons = people.findall("person")

>>> for person in persons:
print person.find("firstName").text
print person.find("lastName").text
print person.find("profession").text

Alan

Turing

Computer Scientist

Stephen

Hawking

Physicist

>>>

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 14: Python IO and Database APIls I

o Working with Databases __.....

 Connection objects represent a connection to a
database

— provide transaction methods rollback () and commit ()
— provide a cursor object via cursor () to access the database

 Cursor object is a pointer to a part of the database

— Connection’s cursor () method returns a pointer to the
database itself on which we can then execute statements
1 SQL Statements are submitted to the execute ()
method of a database cursor
— the execute method returns a cursor to its result

— |If the statement was a select, then the cursor can return the
rows as a Python list of tuples via its fetchall () method

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 14: Python 10 and Database APIs [| [. |

SQLite Databases

1 Say we have the following database schema in people-
create.sql:

create table if not exists person (
person_id integer primary key autoincrement,
first name text,
last name text,
profession text

);

2 And we create an empty SQLite database with it:

$ sqglite3 people.sqglite3

SQLite version 3.7.9 2011-11-01 00:52:41
Enter ".help" for instructions

Enter SQL statements terminated with a ";"
sglite> .read people-create.sql

sgqlite> .exit

$ 1s

people.sqglite3 people-create.sql

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 14: Python IO and Database APIls

_.Inserting Data into an SQLite Databage . .

4 We can insert data into the database from within a Python
program

1 Use the cursor object to execute an SQL insert statement

“ The insert statement uses ? markers for the values, and
the values are supplied with a tuple

>>> import sqglite3

>>> conn = sqglite3.connect("people.sqglite3")

>>> curs = conn.cursor()

>>> curs.execute("insert into person values (?, ?, 2?2, 2)", (1, "Andy", "Register", "EE"))
<sglite3.Cursor object at 0x1004ddle8>

>>> curs.rowcount

1

>>> conn.commit ()

“ The rowcount attribute of the cursor object indicates how many rows of the
database were affected

M The commit () method on the connection object causes the data to be written to
the database. rollback () would undo all changes since the last commit ()

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 14: Python 10 and Database APIs B § H

_.Getting Data Out of an SQLite Databage .

) We can get data with an SQL select query

) After executing a select, the cursor’'s fetchall ()
method returns the results as a list of tuples

>>> curs.execute("insert into person values (?, 2?2, ?, ?)", (2, "Carlee", "Bishop", "Sys
Eng"))
<sglite3.Cursor object at 0x1004ddle8>
>>> conn.commit ()
>>> curs.execute("select * from person")
<sglite3.Cursor object at 0x1004ddle8>
>>> for row in curs.fetchall():
print (row)

(1, u'Andy', u'Register', u'EE")
(2, u'Carlee', u'Bishop', u'Sys Eng')
>>>

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 14: Python IO and Database APIls I

A Complete Example:

... Reading XML Data into a Databasg.... ...

1 Say we have a system that receives data externally in
the form of XML files and inserts the data from them
iInto a database

1 We can read the data from the XML file using
ElementTree parsing shown earlier

1 We can insert the data into our database using the
database APIs we just saw

7 Assume we have an empty database created with the
people-create.sql file we saw earlier

) Let's write a program to read an XML file, extract the
data from it, and insert the data into the database

B § | ©H

....Inserting Data into the Database....,

1 First, we'll write a function to insert persons into the
database in people.py

import sqglite3

def insert person(db conn, person_id, first name, last name, profession):
curs = db _conn.cursor()
curs.execute("insert into person values (2?2, 2?2, 2?2, ?2)",
(person_id, first name, last name, profession))
conn.commit ()

1 We can test our program in progress by importing it
into the Python interactive shell

>>> import people
>>> import sglite3
>>> conn = sqglite3.connect("people.sqglite3d")
>>> people.insert person(conn, 1, "George", "Burdell", "Student")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "people.py", line 7, in insert person

conn.commit ()

NameError: global name 'conn' is not defined

4 Qops. It'sdb conn, not conn

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 14: Python IO and Database APIls I

- Debugging Cycle ot

® So we fix our function:

import sglite3

def insert person(db conn, person_id, first name, last name, profession):
curs = db conn.cursor()
curs.execute("insert into person values (?, 2?2, ?, ?2)",
(person_id, first name, last name, profession))

db_conn.commit ()

" Recreate our empty database:

$ rm people.sqglite3; sqlite3 people.sqglite3 < people-create.sql

7 And try our (hopefully) fixed function:

$ python

>>> import people

>>> import sqglite3

>>> conn = sqglite3.connect("people.sqglite3")

>>> people.insert person(conn, 1, "George", "Burdell", "Student")
>>> conn.cursor().execute("select * from person").fetchall()

[(1, u'George', u'Burdell', u'Student')]

0 Now insert_person() works. On to XML extraction

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 14: Python IO and Database APIls I

person data from element

Georgia
Tech

1 Now let's add a function to extract person data from
an XML element:

import xml.etree.ElementTree

def person data from element(element):
first = element.find("firstName").text
last = element.find("lastName").text
profession = element.find("profession").text
return first, last, profession

7 And test in the Python shell:

$ python

>>> import people

>>> import xml.etree.ElementTree

>>> peeps = xml.etree.ElementTree.parse("people.xml")
>>> first person = peeps.findall("person")[0]

>>> people.person data from element(first person)
('Alan', 'Turing', 'Computer Scientist')

1 Note that we called the XML element peeps so it
wouldn’t clobber the people module name

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 14: Python IO and Database APIls I

- The Complete Program N

I Now we add the main loop to get all the persons from
the XML file and our program is complete

import sqglite3
import xml.etree.ElementTree

def insert person(db conn, person_id, first name, last name, profession):
curs = db conn.cursor()
curs.execute("insert into person values (?, 2?2, ?, ?)",
(person_id, first name, last name, profession))
db _conn.commit()

def person data from element(element):
first = element.find("firstName").text
last = element.find("lastName").text
profession = element.find("profession").text
return first, last, profession

if name == " main_ ":
conn = sqglite3.connect("people.sqlite3")
people = xml.etree.ElementTree.parse("people.xml")
persons = people.findall("person")
for index, element in enumerate(persons):
first, last, profession = person data from element(element)
insert person(conn, index, first, last, profession)

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 14: Python IO and Database APIls I I

. Our Program in Action s

$ rm people.sqglite3; sqglite3 people.sqglite3 < people-create.sql
$ python people.py

$ sglite3 people.sqglite3

SQLite version 3.7.9 2011-11-01 00:52:41

Enter ".help" for instructions

Enter SQL statements terminated with a ";"
sglite> select * from person;
0|Alan|Turing|Computer Scientist
1|Stephen|Hawking|Physicist

sqglite>

|t works!
 But it's lame to have to manually insert primary keys

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 14: Python IO and Database APIls I

Determining a Safe Primary Key (Hard.\Yay)

4 If we insert a record with a duplicate key, it will fail

1 If we know keys are integers, we can get the integers
and add one to the highest one

— Note: can't just use size of table - key values may be
greater due to inserts and deletes

1 Here’s how we can do it in Python:

>>> import sglite3

>>> conn = sglite3.connect("people.sqglite3")
>>> curs = conn.cursor().execute("select person id from person")
>>> results = curs.fetchall()

>>> results

[(0,), (1,)]

>>> keys = [tuple[0] for tuple in results]
>>> keys

[0, 1]

>>> keys.sort()

>>> largest key = keys[len(keys) - 1]

>>> largest key

1

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 14: Python 10 and Database APIs [. |

Determining a Safe Primary Key (Easy.\Yay)

4 The easy way to determine a safe primary key is not to

4 person_id is an auto increment field, so if we insert a
new record into the table with no person id, SQLite
figures out a safe person_id using the logic we just
described

M So instead of

— insert into person (person_id, first name, last name,
profession) values (..

4 We use
— insert into person (first name, last name, profession) values

(...
1 We simply leave out the PK and let SQLite figure it out.

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 14: Python 10 and Database APIs [. |

- A More Robust Program

 This version doesn’t require an empty database

“Tech

-~

import sqglite3
import xml.etree.ElementTree

def insert person(db_conn, first name, last name, profession):
curs = db conn.cursor()

(first name, last name, profession))
db _conn.commit()

def person data from element(element):
first = element.find("firstName").text
last = element.find("lastName").text
profession = element.find("profession").text
return first, last, profession

if name == " main ":
conn = sglite3.connect("people.sqglite3")
people = xml.etree.ElementTree.parse("people.xml")
persons = people.findall("person")
for element in persons:
first, last, profession = person data from element(element)
insert person(conn, first, last, profession)

curs.execute("insert into person (first name, last name, profession) values (?, ?, ?)",

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 14: Python IO and Database APIls

Conclusion

 We learned
— How to parse XML
— How to work with databases
— How to connect XML data and databases using Python
programming
¥ Lots more to know, but we saw the basics

) Consult Python docs or books for more details

Copyright © Georgia Tech. All Rights Reserved. ASE 6121 Information Systems, Lecture 14: Python IO and Database APIls I

