
Python XML and Database APIs

Christopher Simpkins
chris.simpkins@gatech.edu

mailto:chris.simpkins@gatech.edu

ASE 6121 Information Systems, Lecture 14: Python IO and Database APIsCopyright © Georgia Tech. All Rights Reserved. !2

Outline
 XML Parsing

– SAX Parsers
– DOM Parsers
– ElementTree - the Pythonic way

 Working with databases
– Connections
– Cursors
– Statements
– Transactions

ASE 6121 Information Systems, Lecture 14: Python IO and Database APIsCopyright © Georgia Tech. All Rights Reserved.

XML Parsing
 CSV files are simply structured text-based data files
 XML files are more highly structured text-based data files, allowing

nested, or “tree” structured data to be represented in text
 An XML Parser reads an XML file and extracts its structure. Three

kinds of XML parsers:
– SAX (Simple API for XML): a state machine that produces events for each

element read from an XML file. Parser responds to events to process these
elements

– DOM (Document Object Model): the DOM standard specifies an object-tree
representation of an XML document

» Tip: In Google Chrome you can see the DOM tree of any web page by
clicking View->Developer->Developer Tools in the menu and clicking the
Elements tab in the lower pane. Expand elements of the DOM tree and
cursor over them to see the rendered parts of the page they represent. In
FireFox you can install a plug-in to do the same thing

 We’ll use ElementTree, which is essentially a Python-specific DOM
parser

!3

ASE 6121 Information Systems, Lecture 14: Python IO and Database APIsCopyright © Georgia Tech. All Rights Reserved.

ElementTree
 An ElementTree is a representation of an XML

document as a tree of Element objects with easy to
use methods:
– parse(“fileName”) reads an XML file and create an

ElementTree representation of its document
– find(“elementName”) gets a single child of an element
– findall(“elementName”) gets an iterator over the like-

named children of an element
 That’s it. Really. It’s that simple.

!4

ASE 6121 Information Systems, Lecture 14: Python IO and Database APIsCopyright © Georgia Tech. All Rights Reserved.

A Complete XML Parsing Example

!5

 Say we have an XML file named people.xml
<?xml version="1.0"?>!!
<people>!
 <person>!
 <firstName>Alan</firstName>!
 <lastName>Turing</lastName>!
 <profession>Computer Scientist</profession>!
 </person>!
 <person>!
 <firstName>Stephen</firstName>!
 <lastName>Hawking</lastName>!
 <profession>Physicist</profession>!
 </person>!
</people>

 Our XML document will have a root element named people and
child elements named person

 Each person element will have three child elements named
firstName, lastName, and profession

ASE 6121 Information Systems, Lecture 14: Python IO and Database APIsCopyright © Georgia Tech. All Rights Reserved.

Parsing with ElementTree

!6

 Parsing people.xml with ElementTree is this easy:

>>> import xml.etree.ElementTree!
>>> people = xml.etree.ElementTree.parse("people.xml")!
>>> persons = people.findall("person")!
>>> for person in persons:!
... print person.find("firstName").text!
... print person.find("lastName").text!
... print person.find("profession").text!
... !
Alan!
Turing!
Computer Scientist!
Stephen!
Hawking!
Physicist!
>>>

ASE 6121 Information Systems, Lecture 14: Python IO and Database APIsCopyright © Georgia Tech. All Rights Reserved.

Working with Databases
 Connection objects represent a connection to a

database
– provide transaction methods rollback() and commit()
– provide a cursor object via cursor() to access the database

 Cursor object is a pointer to a part of the database
– Connection’s cursor() method returns a pointer to the

database itself on which we can then execute statements
 SQL Statements are submitted to the execute()

method of a database cursor
– the execute method returns a cursor to its result
– If the statement was a select, then the cursor can return the

rows as a Python list of tuples via its fetchall() method
!7

ASE 6121 Information Systems, Lecture 14: Python IO and Database APIsCopyright © Georgia Tech. All Rights Reserved.

SQLite Databases

!8

 Say we have the following database schema in people-
create.sql:
create table if not exists person (!
 person_id integer primary key autoincrement,!
 first_name text,!
 last_name text,!
 profession text!
);

 And we create an empty SQLite database with it:
$ sqlite3 people.sqlite3!
SQLite version 3.7.9 2011-11-01 00:52:41!
Enter ".help" for instructions!
Enter SQL statements terminated with a ";"!
sqlite> .read people-create.sql!
sqlite> .exit!
$ ls!
people.sqlite3 people-create.sql

ASE 6121 Information Systems, Lecture 14: Python IO and Database APIsCopyright © Georgia Tech. All Rights Reserved.

Inserting Data into an SQLite Database

!9

 We can insert data into the database from within a Python
program

 Use the cursor object to execute an SQL insert statement
 The insert statement uses ? markers for the values, and

the values are supplied with a tuple
>>> import sqlite3!
>>> conn = sqlite3.connect("people.sqlite3")!
>>> curs = conn.cursor()!
>>> curs.execute("insert into person values (?, ?, ?, ?)", (1, "Andy", "Register", "EE"))!
<sqlite3.Cursor object at 0x1004dd1e8>!
>>> curs.rowcount!
1!
>>> conn.commit()

 The rowcount attribute of the cursor object indicates how many rows of the
database were affected

 The commit() method on the connection object causes the data to be written to
the database. rollback() would undo all changes since the last commit()

ASE 6121 Information Systems, Lecture 14: Python IO and Database APIsCopyright © Georgia Tech. All Rights Reserved.

Getting Data Out of an SQLite Database

!10

 We can get data with an SQL select query
 After executing a select, the cursor’s fetchall()

method returns the results as a list of tuples
>>> curs.execute("insert into person values (?, ?, ?, ?)", (2, "Carlee", "Bishop", "Sys
Eng"))!
<sqlite3.Cursor object at 0x1004dd1e8>!
>>> conn.commit()!
>>> curs.execute("select * from person")!
<sqlite3.Cursor object at 0x1004dd1e8>!
>>> for row in curs.fetchall():!
... print(row)!
... !
(1, u'Andy', u'Register', u'EE')!
(2, u'Carlee', u'Bishop', u'Sys Eng')!
>>>

ASE 6121 Information Systems, Lecture 14: Python IO and Database APIsCopyright © Georgia Tech. All Rights Reserved.

A Complete Example:
Reading XML Data into a Database

 Say we have a system that receives data externally in
the form of XML files and inserts the data from them
into a database

 We can read the data from the XML file using
ElementTree parsing shown earlier

 We can insert the data into our database using the
database APIs we just saw

 Assume we have an empty database created with the
people-create.sql file we saw earlier

 Let’s write a program to read an XML file, extract the
data from it, and insert the data into the database

!11

ASE 6121 Information Systems, Lecture 14: Python IO and Database APIsCopyright © Georgia Tech. All Rights Reserved.

Inserting Data into the Database
 First, we’ll write a function to insert persons into the

database in people.py

!12

import sqlite3!!
def insert_person(db_conn, person_id, first_name, last_name, profession):!
 curs = db_conn.cursor()!
 curs.execute("insert into person values (?, ?, ?, ?)",!
 (person_id, first_name, last_name, profession))!
 conn.commit()

 We can test our program in progress by importing it
into the Python interactive shell

>>> import people!
>>> import sqlite3!
>>> conn = sqlite3.connect("people.sqlite3")!
>>> people.insert_person(conn, 1, "George", "Burdell", "Student")!
Traceback (most recent call last):!
 File "<stdin>", line 1, in <module>!
 File "people.py", line 7, in insert_person!
 conn.commit()!
NameError: global name 'conn' is not defined

 Oops. It’s db_conn, not conn

ASE 6121 Information Systems, Lecture 14: Python IO and Database APIsCopyright © Georgia Tech. All Rights Reserved.

Debugging Cycle

!13

 So we fix our function:
import sqlite3!!
def insert_person(db_conn, person_id, first_name, last_name, profession):!
 curs = db_conn.cursor()!
 curs.execute("insert into person values (?, ?, ?, ?)",!
 (person_id, first_name, last_name, profession))!
 db_conn.commit()

 Recreate our empty database:
$ rm people.sqlite3; sqlite3 people.sqlite3 < people-create.sql

 And try our (hopefully) fixed function:
$ python!
>>> import people!
>>> import sqlite3!
>>> conn = sqlite3.connect("people.sqlite3")!
>>> people.insert_person(conn, 1, "George", "Burdell", "Student")!
>>> conn.cursor().execute("select * from person").fetchall()!
[(1, u'George', u'Burdell', u'Student')]

 Now insert_person() works. On to XML extraction

ASE 6121 Information Systems, Lecture 14: Python IO and Database APIsCopyright © Georgia Tech. All Rights Reserved.

person_data_from_element

!14

 Now let’s add a function to extract person data from
an XML element:

import xml.etree.ElementTree!!
def person_data_from_element(element):!
 first = element.find("firstName").text!
 last = element.find("lastName").text!
 profession = element.find("profession").text!
 return first, last, profession

 And test in the Python shell:
$ python!
>>> import people!
>>> import xml.etree.ElementTree!
>>> peeps = xml.etree.ElementTree.parse("people.xml")!
>>> first_person = peeps.findall("person")[0]!
>>> people.person_data_from_element(first_person)!
('Alan', 'Turing', 'Computer Scientist')

 Note that we called the XML element peeps so it
wouldn’t clobber the people module name

ASE 6121 Information Systems, Lecture 14: Python IO and Database APIsCopyright © Georgia Tech. All Rights Reserved.

The Complete Program

!15

 Now we add the main loop to get all the persons from
the XML file and our program is complete

import sqlite3!
import xml.etree.ElementTree!!
def insert_person(db_conn, person_id, first_name, last_name, profession):!
 curs = db_conn.cursor()!
 curs.execute("insert into person values (?, ?, ?, ?)",!
 (person_id, first_name, last_name, profession))!
 db_conn.commit()!!
def person_data_from_element(element):!
 first = element.find("firstName").text!
 last = element.find("lastName").text!
 profession = element.find("profession").text!
 return first, last, profession!!
if __name__ == "__main__":!
 conn = sqlite3.connect("people.sqlite3")!
 people = xml.etree.ElementTree.parse("people.xml")!
 persons = people.findall("person")!
 for index, element in enumerate(persons):!
 first, last, profession = person_data_from_element(element)!
 insert_person(conn, index, first, last, profession)

ASE 6121 Information Systems, Lecture 14: Python IO and Database APIsCopyright © Georgia Tech. All Rights Reserved.

Our Program in Action

!16

$ rm people.sqlite3; sqlite3 people.sqlite3 < people-create.sql!
$ python people.py!
$ sqlite3 people.sqlite3 !
SQLite version 3.7.9 2011-11-01 00:52:41!
Enter ".help" for instructions!
Enter SQL statements terminated with a ";"!
sqlite> select * from person;!
0|Alan|Turing|Computer Scientist!
1|Stephen|Hawking|Physicist!
sqlite>

 It works!
 But it’s lame to have to manually insert primary keys

ASE 6121 Information Systems, Lecture 14: Python IO and Database APIsCopyright © Georgia Tech. All Rights Reserved.

Determining a Safe Primary Key (Hard Way)
 If we insert a record with a duplicate key, it will fail
 If we know keys are integers, we can get the integers

and add one to the highest one
– Note: can’t just use size of table - key values may be

greater due to inserts and deletes
 Here’s how we can do it in Python:

!17

>>> import sqlite3!
>>> conn = sqlite3.connect("people.sqlite3")!
>>> curs = conn.cursor().execute("select person_id from person")!
>>> results = curs.fetchall()!
>>> results!
[(0,), (1,)]!
>>> keys = [tuple[0] for tuple in results]!
>>> keys!
[0, 1]!
>>> keys.sort()!
>>> largest_key = keys[len(keys) - 1]!
>>> largest_key!
1

ASE 6121 Information Systems, Lecture 14: Python IO and Database APIsCopyright © Georgia Tech. All Rights Reserved.

Determining a Safe Primary Key (Easy Way)
 The easy way to determine a safe primary key is not to
 person_id is an auto increment field, so if we insert a

new record into the table with no person_id, SQLite
figures out a safe person_id using the logic we just
described

 So instead of
– insert into person (person_id, first_name, last_name,
profession) values (…

 We use
– insert into person (first_name, last_name, profession) values
(…

 We simply leave out the PK and let SQLite figure it out.

!18

ASE 6121 Information Systems, Lecture 14: Python IO and Database APIsCopyright © Georgia Tech. All Rights Reserved.

A More Robust Program
 This version doesn’t require an empty database

!19

import sqlite3!
import xml.etree.ElementTree!!
def insert_person(db_conn, first_name, last_name, profession):!
 curs = db_conn.cursor()!
 curs.execute("insert into person (first_name, last_name, profession) values (?, ?, ?)",!
 (first_name, last_name, profession))!
 db_conn.commit()!!
def person_data_from_element(element):!
 first = element.find("firstName").text!
 last = element.find("lastName").text!
 profession = element.find("profession").text!
 return first, last, profession!!
if __name__ == "__main__":!
 conn = sqlite3.connect("people.sqlite3")!
 people = xml.etree.ElementTree.parse("people.xml")!
 persons = people.findall("person")!
 for element in persons:!
 first, last, profession = person_data_from_element(element)!
 insert_person(conn, first, last, profession)!

ASE 6121 Information Systems, Lecture 14: Python IO and Database APIsCopyright © Georgia Tech. All Rights Reserved.

Conclusion
 We learned

– How to parse XML
– How to work with databases
– How to connect XML data and databases using Python

programming
 Lots more to know, but we saw the basics
 Consult Python docs or books for more details

!20

