Regular Expressions

Georgia
Tech

1/12

OH NO! THE KILLER || BUT TD FIND THEM WE'D HAVE TO SEARCH
MUST HAVE ROLLOWED| | THROUGH 200 MB OF EMAILS LOOKING FOR
HER ON VACATION | um-mm FORMATTED LIKE AN ADDRESS!

£ =i

T KNOW REGULAR
EXPRESSIONS.

B R

https://xkcd.com/208/ Ge%regciﬁ

2/12

https://xkcd.com/208/
https://xkcd.com/208/

Regular Expressions

In computer science, a language is a set of strings. Like any set, a
language can be specified by enumeration (listing all the elements) or
with a rule (or set of rules).

» A regular language is specified with a regular expression.

» We use a regular expression, or pattern, to test whether a string
"matches" the specification, i.e., whether it is in the language.

Python provides regular expression matching operations in the re module.
For a gentle introduction to Python regular expressions, see Python
Regualr Expression HOWTO

Georgia
Tech

2/12

https://docs.python.org/3/howto/regex.html
https://docs.python.org/3/howto/regex.html

Matching with match ()

Every string is a regular expression, so let's explore the re module using
simple string patterns.
re 's match(pattern, string) function applies a pattern to a string:

>>> re.match(r'foo', 'foobar')
<_sre.SRE_Match object; span=(0, 3), match='foo'>
>>> re.match(r'oo', 'foobar')

match returns a Match object if the string begins with the pattern, or
None if it does not.

Notice that we use a special raw string syntax for regular expressions
because normal Python strings use backslash (\) as an escape character
but regexes use backslash extensively, so usgin raw strings avoids having
to double-escape special regex forms that use backslash.

Georgia
Tech

3/12

https://docs.python.org/3/library/re.html

Finding Matches with search() and findall ()

search(pattern, string) is like match, but it finds the first
occurrence of pattern in string, wherever it occurs in the string (not just
the beginning).

>>> re.match(r'oo', 'foobar')
>>> re.search(r'oo', 'foobar')
<_sre.SRE_Match object; span=(1, 3), match='oo'>

Note the span=(1, 3) in the returned match object. It specifies the
location within the string that contained the match, using the same
indexing scheme used in slices, i.e., from beginning index inclusive to
ending index exclusive.

findall returns a list of substrings matched by the regex pattern.

>>> re.findall(r'na', 'nana nana nana nana Batman!')

['na', 'na', 'na', 'na', 'na', 'na', 'na', 'na']

Georgia
Tech

4/12

The Match Object

The match and search funtions return a Match object. The important
methods on the Match object are:

group() returns the string matched by the regex
start () returns the starting position of the match
end () returns the ending position of the match

vV v v v

span() returns a tuple containing the (start, end) positions of the
match

For example:

>>> re.search(r'oo', 'foobar')

<_sre.SRE_Match object; span=(1, 3), match='oo'>
>>> m.group()

|oo|

>>> m.span()

1, 3)

>>> m.start ()

1

Georgia
Tech

5/12

Using the Match Object

Since match and search return a Match object if a match is found, or
None if no match is found, a common programming idiom is to test the
Match object directly.

>>> m = re.match(r'foo', 'foobar')
>>> if m:
print ('Match found: ' + m.group())

Match found: oo

Most of the examples in this lecture will use £indall for simplicity and
to demonstrate multiple matches in a single string.

Georgia
Tech

6/12

Metacharacters

Regexes are much more powerful when you add metacharacters. We'll
learn the basics of:

. - Match any character

\ - Escape special characters

| - Or operator

~ - Match at the beginning of a string/line
$ - Match at the end of a string/line

* - Match 0 or more of the preceding regex
+ - Match 1 or more of the preceding regex
? - Match 0 or 1 of the preceding regex

{ } - Bounded repetition

[1 - Character class

vV vV YV ¥V ¥V VY VY VY VvV VY

() - Capture group within a matched substring
Georgia
Tech

7/12

Patterns with Metacharacters

. matches any single character. This example also demonstrates that
findall finds non-overlapping matches.

>>> re.findall(r'a.a', 'abracadabra')
['aca']

>>> re.findall(r'a.a', 'abra abra cadabra')
['a a', 'ada']

\ escape special characters so we can match them in strings.

>>> re.search(r'C:\\>', '$ C:\> >>>')
<_sre.SRE_Match object; span=(2, 6), match='C:\\>'>

~ and $ match at the beginning or end of a string/line.

>>> re.search(r'~na', 'nana nana nana nana Batman!')
<_sre.SRE_Match object; span=(0, 2), match='na'>
>>> re.search(r'na$', 'nana nana nana nana')

<_sre.SRE_Match object; span=(17, 19), match='na'>

Georgia
Tech

8/12

Repetition

* matches 0 or more of the preceding regex

>>> re.findall(r'a.a*', 'abra abra cadabra')
['ab', 'a a', 'a ', 'ada']

+ matches 1 or more of the preceding regex

>>> re.findall(r'a.+a', 'abra abra cadabra')
['abra abra cadabra']

Notice that .+ performed a greedy match - it matched as many
characters as possible. We can make it non-greedy by adding a 7:

>>> re.findall(r'a.+7a', 'abra abra cadabra')
['abra', 'abra', 'ada']

7 after an ordinary character matches 0 or 1 of them

>>> re.findall(r'ab?a', 'aba anna abba aa')
['aba', 'aa']

{ } bounds the repetition by an arbitray number

>>> re.findall(r'ab{2}a', 'aba anna abba abbba')
['abba']

Georqgia
Te%h

9/12

Character Classes and Alternatives

[] creates an arbitrary character class

>>> re.findall(r'[rmpl]ain', 'the rain in spain falls mainly in the
plain')
['rain', 'pain', 'main', 'lain']

You can specify ranges of characters in a character class.

>>> re.findall(r'[0-9]+', '500 Tech Parkway, Atlanta, GA 30332')
['500', '30332']

You can specify alternative patterns to match with |, which you can read
as ”Or.”

>>> re.findall(r'rain|plain', 'the rain in spain falls mainly in the
plain')
['rain', 'plain']

Georgia
Tech

10/12

Predefined Character Classes

Character classes are useful, so several are predefined.

>

| 4

\d Matches any decimal digit; this is equivalent to the class [0-9].
\D Matches any non-digit character; this is equivalent to the class
[~0-9].

\s Matches any whitespace character; this is equivalent to the class
[\t\n\r\f\v].

\S Matches any non-whitespace character; this is equivalent to the

class [~ \t\n\r\f\v].

\w Matches any alphanumeric character; this is equivalent to the
class [a-zA-Z0-9_].

\W Matches any non-alphanumeric character; this is equivalent to
the class [~a-zA-Z0-9_].
a .
“Sech

11/12

Match Capture Groups

Capture groups allow you to match on a pattern but capture a substring
of what was matched. This is particularly useful in extracting element
text from XML-like documents where your pattern includes the open and
close tags but you only want the text between the tags.

>>> activities =

>>> re.findall(r'<1i>(.+)</1i>', activities)
['eat', 'sleep', 'code'l

Georgia
Tech

12 /12

	Regular Expressions

