
Modules and Programs

1 / 12

Python Programs

Python code organized in

I modules,
I packages, and
I scripts.

We’ve already used some modules, now we’ll learn what they are, how
they’re orgainized in packages, and how to write Python programs that
can be run on their own, not just entered in the Python command shell.

2 / 12

Importing Modules

~import~ing a module means getting names from the module into scope.
When you import a module, you can access the modules components
with the dot operator as in the previous example.

>>> import math
>>> math.sqrt(64)
8.0

You can also import a module and give it an alias: import <module> as
<local-name>

>>> import math as m
>>> m.sqrt(64)
8.0

3 / 12

Importing into Local Scope

Remember that importing brings names into the scope of the import.
Here we import the math module into one function.

>>> def hypotenuse(a, b):
... import math
... return math.sqrt(a*a + b*b)
...
>>> hypotenuse(3, 4)
5.0
>>> math.sqrt(64)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name ’math’ is not defined

4 / 12

Importing Names from a Module
You can choose to import only certain names from a module:

>>> from math import sqrt
>>> sqrt(64)
8.0
>>> floor(1.2)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name ’floor’ is not defined

Or all names from a module:

>>> from math import *
>>> floor(1.2)
1
>>> sin(0)
0.0
>>> sin(.5 * pi)
1.0

Notice that with this syntax you don’t have to use a fully-qualified name,
e.g., module.name

5 / 12

Module Search Path

Just as an operating system command shell searches for executable
programs by searching the directories listed in the PATH environment
variable, Python finds modules by searching directories. The module
search path is stored in sys.path:

>>> import sys
>>> from pprint import pprint
>>> pprint(sys.path)
[’’,
’/home/chris/miniconda3/lib/python35.zip’,
’/home/chris/miniconda3/lib/python3.5’,
’/home/chris/miniconda3/lib/python3.5/plat-linux’,
’/home/chris/miniconda3/lib/python3.5/lib-dynload’,
’/home/chris/miniconda3/lib/python3.5/site-packages’,
’/home/chris/miniconda3/lib/python3.5/site-packages/setuptools-23.0.0-py3.5.egg’]

Notice that the current directory, represented by the ” at the beginning
of the search path.
Also, note use of pprint.

6 / 12

Python Scripts

Take a look at the draw.py file. Notice the if statement at the bottom:

Is this the main (top-level) module?
if __name__ == ’__main__’:

stand()
head()
body()
leftarm()
rightarm()
leftleg()
rightleg()
Pause so the user can see the drawing before exiting.
input(’Press any key to exit.’)

This makes the module a runnable Python program. It’s similar to the
main function or method from some other programming languages. With
it we can import the file as a module to use its functions (or objects or
variables), or run it from the command line.

7 / 12

Shebang!

Another way to run a Python program (on Unix) is to tell the host
operating system how to run it. We do that with a "shebang" line at the
beginning of a Python program:

#!/usr/bin/env python3

This line says "run python3 and pass this file as an argument." So if you
have a program called foo with shebang line as above and which has
been set executable (chmod +x foo.py), thse are equivalent:

$ python3 foo.py
$./foo.py

8 / 12

Interactive Programs

The input() function Python reads all the characters typed into the
console until the user presses ENTER and returns them as a string:

>>> x = input()
abcdefg1234567
>>> x
’abcdefg1234567’

We can also supply a prompt for the user:

>>> input(’Give me a number: ’)
Give me a number: 3
’3’

And remember, input() returns a string that may need to be converted.

>>> 2 * int(input("Give me a number and I’ll double it: "))
Give me a number and I’ll double it: 3
6

9 / 12

Command Line Arguments

$ python args.py one 2 two + one

The python invocation above contains 6 command line arguments.

10 / 12

Command-line Arguments in Python

When you run a Python program, Python collects the arguments to the
program in a variable called sys.argv. Given a Python program
(arguments.py):

#!/usr/bin/env python3
import sys

if len(sys.argv) < 2:
print("You’ve given me nothing to work with.")

else:
print(sys.argv[1] +"? Well I disagree!")

$./arguments.py Pickles
Pickles? Well I disagree!
$./arguments.py
You’ve given me nothing to work with.

11 / 12

Conclusion

Python Arguments

12 / 12

https://www.youtube.com/embed/kQFKtI6gn9Y

	Modules and Programs

