
Functional Programming

1 / 13

Functional Features in Python

Functions are first class, meaning they can be

I stored in variables and data structures
I passed as arguments to functions
I returned from functions

2 / 13

Higher-Order Functions

A higher order function is a function that takes another function as a
parameter or returns a function as a value. We’ve already used one:
>>> help(sorted)
...
sorted(iterable, key=None, reverse=False)

Return a new list containing all items from the iterable in ascending order.

A custom key function can be supplied to customise the sort order, and the
reverse flag can be set to request the result in descending order.

The second parameter, key, is a function. In general, a sort key is the
part of an object on which comparisons are made in a sorting algorithm.

3 / 13

Sorting without a key

Say we have a list of tuples, (name, gpa, major):
>>> import pprint as pp
>>> studs = [("Stan", 2.5, "ISyE"), ("Kyle", 2.2, "CS"),
... ("Cartman", 2.4, "CmpE"), ("Kenny", 4.0, "ME")]

The default sort order is simply elementwise by the default order for each
type in the tuple:
>>> pp.pprint(sorted(studs))
[(’Cartman’, 2.4, ’CmpE’),
(’Kenny’, 4.0, ’ME’),
(’Kyle’, 2.2, ’CS’),
(’Stan’, 2.5, ’ISyE’)]

Answer for yourself: what if two students had the same name?

4 / 13

Sorting with a key

If we want a different sort order, we can define a function that extracts
the part of each tuple by which we want to sort.
>>> def by_gpa(stud):
... return stud[1]
...
>>> pp.pprint(sorted(studs, key=by_gpa))
[(’Kyle’, 2.2, ’CS’),
(’Cartman’, 2.4, ’CmpE’),
(’Stan’, 2.5, ’ISyE’),
(’Kenny’, 4.0, ’ME’)]

sorted is a higher-order function because it takes a function as an
argument.

5 / 13

Lambda Functions

The by_gpa function is pretty simple. Instead of defining a named
function, we can define it inline with an anonymous function, a.k.a., a
lambda function:
>>> pp.pprint(sorted(studs, key=lambda t: t[1]))
[(’Kyle’, 2.2, ’CS’),
(’Cartman’, 2.4, ’CmpE’),
(’Stan’, 2.5, ’ISyE’),
(’Kenny’, 4.0, ’ME’)]

The general form is lambda <parameter_list>: <expression>
The body of a lambda function is limited to a single expression, which is
implicitly returned.

6 / 13

map

Common task: build a sequence out of transformations of elements of an
existing sequence. Here’s the imperative approach:
>>> houses = ["Stark", "Lannister", "Targaryen"]
>>> shout = []
>>> for house in houses:
... shout.append(house.upper())
...
>>> shout
[’STARK’, ’LANNISTER’, ’TARGARYEN’]

Heres’ the functional approach:
>>> list (map(lambda house: house.upper(), houses))
[’STARK’, ’LANNISTER’, ’TARGARYEN’]

Note that map returns an iterator, so we pass it to the list constructor.

7 / 13

filter

>>> nums = [0,1,2,3,4,5,6,7,8,9]
>>> filter (lambda x: x % 2 == 0, nums)
< filter object at 0x1013e87f0>
>>> list (filter (lambda x: x % 2 == 0, nums))
[0, 2, 4, 6, 8]

8 / 13

List Comprehensions

A list comprehension iterates over a (optionally filtered) sequence, applies
an operation to each element, and collects the results of these operations
in a new list, just like map.
>>> grades = [100, 90, 0, 80]
>>> [x for x in grades]
[100, 90, 0, 80]
>>> [x + 10 for x in grades]
[110, 100, 10, 90]

We can also filter in a comprehension:
>>> [x + 50 for x in grades if x < 50]
[50]

Comprehensions are more Pythonic than using map and filter directly.

9 / 13

Dictionary Comprehensions

First, zip:
words = ["Winter is coming", "Hear me roar", "Fire and blood"]
>>> list (zip(houses, words))
[(’Stark’, ’Winter is coming’), (’Lannister’, ’Hear me roar’), (’Targaryen’,

’Fire and blood’)]

Dictionary comprehension using tuple unpacking:
>>> house2words = {house: words for house, words in zip(houses, words)}
>>> house2words
{’Lannister’: ’Hear me roar’, ’Stark’: ’Winter is coming’, ’Targaryen’: ’Fire and

blood’}

Of course, we could just use the dict constructor on the zip object.
>>> dict(zip(houses, words))
{’Lannister’: ’Hear me roar’, ’Stark’: ’Winter is coming’, ’Targaryen’: ’Fire and

blood’}

10 / 13

reduce

>>> import functools
>>> functools.reduce(lambda x, y: x + y, [0,1,2,3,4,5,6,7,8,9])
45

Confirm this using the standard sum Σn
i=1i = n(n+1)

2
Here’s factorial:
>>> functools.reduce(lambda x, y: x * y, [1,2,3,4,5])
120
>>> functools.reduce(lambda x, y: x * y, range(1,6))
120

11 / 13

Generator Functions

You won’t be tested on generator functions, but they’re too cool not to
show you!
def class_dates(first, last, class_days):

"""Generate dates from first to last whose weekdays are in class_days

>>> import datetime
>>> begin = datetime.date(2016, 8, 22)
>>> end = datetime.date(2016, 8, 25)
>>> list(class_dates(begin, end, "TR"))
[datetime.date(2016, 8, 23), datetime.date(2016, 8, 25)]
"""
day = first
e.g., "MWF" => [0, 2, 4]
class_day_ints = [i for i, letter in enumerate("MTWRFSU")

if letter in class_days]
while day <= last:

if day.weekday() in class_day_ints:
yield day

day += dt.timedelta(days=1)

12 / 13

Exercise

Write comprehension expressions that build the data structures in the
Grades exercise.

13 / 13

../exercises/grades.html

	Functional Programming in Python

