
Control Structures

1 / 16

Structured Programming

Any algorithm can be expressed by:

I Sequence - one statement after another
I Selection - conditional execution (not conditional jumping)
I Repetition - loops

We’ve already seen sequences of statements. Today we’ll learn selection
(conditional execution), and repetition.

2 / 16

Binary Values

There are 10 kinds of people:

I those who know binary, and
I those who don’t.

3 / 16

Python Booleans

In Python, boolean values have the bool type. Four kinds of boolean
expressions:

I bool literals: True and False
I bool variables
I expressions formed by combining non-bool expressions with

comparison operators
I expressions formed by combining bool expressions with logical

operators

4 / 16

Comparison Expressions

Simple boolean expressions formed with comparison operators:

I Equal to: ==, like = in math
I Remember, = is assignment operator, == is comparison operator!

I Not equal to: !=, like 6= in math
I Greater than: >, like > in math
I Greater than or equal to: >=, like ≥ in math

. . .
Examples:

1 == 1 # True
1 != 1 # False
1 >= 1 # True
1 > 1 # False

5 / 16

Truth in Python

These values are equivalent to False:

I boolean False
I None
I integer 0
I float 0.0
I empty string ""
I empty list []
I empty tuple ()
I empty dict {}
I empty set set()

All other values are equivalent to True.

6 / 16

Logical Expressions
Boolean expressions can be combined using logical operators and, or, not.

(1 == 1) and (1 != 1) // False
(1 == 1) or (1 != 1) // True

Logical expressions use short-circuit evaluation:
I or only evaluates second operand if first operand is False
I and only evaluates second operand if first operand is True

What are the values of the following expressions?
I True and False
I True and 0
I True and []
I True and None
I type(True and None)
I False or 1
I True or 1

Guard idiom: (b == 0) or print(a / b), or (b != 0) and print(a
/ b)

7 / 16

The if-else Statement

Conditional execution:

if boolean_expression:
a single statement executed when boolean_expression is true

else:
a single statement executed when boolean_expression is false

I boolean_expression is not enclosed in parentheses
I else: not required

Example:

if (num % 2) == 0:
print("I like " + str(num))

else:
print("I’m ambivalent about " + str(num))

8 / 16

Blocks

Python is block-structured. Contiguous sequences of statements at the
same indentation level form a block. Blocks are like single statements
(not expressions - they don’t have values).

if num % 2 == 0:
print(str(num) + " is even.")
print("I like even numbers.")

else:
print(str(num) + " is odd.");
print("I’m ambivalent about odd numbers.")

9 / 16

Multi-way if-else Statements

This is hard to follow:

if color == "red":
print("Redrum!")

else:
if color == "yellow":

print("Submarine")
else:

print("A Lack of Color")

This multi-way if-else is equivalent, and clearer:

if color == "red":
print("Redrum!")

elif color == "yellow":
print("Submarine")

else:
print("A Lack of Color")

10 / 16

Loops

Algorithms often call for repeated action, e.g. :

I “repeat . . . while (or until) some condition is true” (looping) or
I “for each element of this array/list/etc. . . . ” (iteration)

Python provides two control structures for repeated actions:

I while loop
I for iteration statement

11 / 16

while Loops
while loops are pre-test loops: the loop condition is tested before the
loop body is executed

while condition: # condition is any boolean expression
loop body executes as long as condition is true

Example

>>> def countdown(n):
... while n > 0:
... print(n)
... n -= 1
...
print(’Blast off!’)
...
>>> countdown(5)
5
4
3
2
1
Blast off!

12 / 16

for Statements

for is an iteration statement

I iteration means visiting the elements of an iterable data structure

In the for loop:

>>> animal = ’Peacock’
>>> for animal in [’Giraffe’, ’Alligator’, ’Liger’]:
... print(animal)
...
Giraffe
Alligator
Liger
>>> animal
’Liger’

I animal is assigned to each element of the iterable list of animals in
successive executions of the for loop’s body

I notice that the loop variable re-assigned an existing variable

13 / 16

break and else
I break terminates execution of a loop
I optional else clause executes only of loop completes without

executing a break (weird - don’t ever write code with for-else)

>>> def sweet_animals(animals):
... for animal in animals:
... print(animal)
... if animal == ’Liger’:
... print(’Mad drawing skillz!’)
... break
... else:
... print(’No animals of note.’)
...
>>> sweet_animals([’Peacock’, ’Liger’, ’Alligator’])
Peacock
Liger
Mad drawing skillz!
>>> sweet_animals([’Peacock’, ’Tiger’, ’Alligator’])
Peacock
Tiger
Alligator
No animals of note.

14 / 16

Run-time Errors
An error detected during execution is called an exception and is
represented at runtime by an exception object. The Python interpreter
raises an exception at the point an error occurs. The exception is handled
by some exception-handling code. Here we don’t handle the ValueError
ourselves, so it’s handled by the Python shell:

>>> int(’e’)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: ’e’

We can handle an exception by enclosing potentially error-raising code in
a try block and handling errors in an except clause.

try:
code_that_may_raise_error()

except ExceptionType as e:
print(str(e))
code_that_handles_exception()

ExceptionType and as e are optional. If left off, except clause will
catch any exception.

15 / 16

Exception Handling Example

>>> def get_number_from_user():
... input_is_invalid = True
... while input_is_invalid:
... num = input(’Please enter a whole number: ’)
... try:
... num = int(num)
... # Won’t get here if exception is raised. ’
... input_is_invalid = False
... except ValueError:
... print(num + ’ is not a whole number. Try again.’)
... return num
...
>>> get_number_from_user()
Please enter a whole number: e
e is not a whole number. Try again.
Please enter a whole number: 3
3

For more information, see https://docs.python.org/3/tutorial/errors.html

16 / 16

https://docs.python.org/3/tutorial/errors.html

	Control Structures

