
Flask

Data Manipulation in Python

1 / 12

Flask

Python’s built-in web server is nice, but serious web development is done
using a web framework. Web frameworks typically provide:

I Routes, which map URLs to server files or Python code
I Templates, which dynamically insert server-side data into pages of

HTML
I Authentication and authorization of user names, passwords,

permissions
I Sessions, which keep track of a user during a single visit to a site
I and more . . .

We’ll use a simple Python web framework called Flask.

2 / 12

http://flask.pocoo.org/

Installing Flask

To install Flask, use conda:
$ conda install flask

To check that your Flask installation was successful, import it:
>>> import flask

If you get no error messages, you’re ready to start developing web
applications with Flask.

3 / 12

Hello, Flask!

Download hello_flask.py or paste the following into a file named
hello_flask.py:
from flask import Flask, request

app = Flask(__name__)

@app.route("/")
def index():

return "<h1>Hello, Flask!</h1>"

if __name__ == ’__main__’:
app.run(debug=True)

In the same directory as your hello_flask.py file run:
$ python3 hello_flask.py
* Running on http://127.0.0.1:5000/
* Restarting with reloader

If you see that output, you should be able to visit your web application in
your browser at http://localhost:5000/

4 / 12

../code/web/hello_flask.py
http://localhost:5000/

Initialization

All Flask applications must create an application instance:
from flask import Flask

app = Flask(__name__)

The argument to the Flask constructor is the name of the main module or
package of the application. For our web apps it will always be __name__.

5 / 12

Routes and View Functions

Routes map URLs that a web site visitor sees in their address bar to a
servier side resource. In:
@app.route("/")
def index():

return "<h1>Hello, Flask!</h1>"

I @app.route("/") registers the function below it, in this case
index(), as the handler for / (the index, or default page)

I @app.route() is an example of a decorator function, which is a
special syntax for higher-order functions (functions that take
functions as parameters). Don’t worry about the details.

I index() is an example of a view function.
I The string returned from a view function is sent in the reponse to

the client

6 / 12

Dynamic Routes

Add this function to hello_flask.py
@app.route("/user/<name>")

def user(name):
return f"<h1>Hello, {name}!</h1>"

I /user/ is the static part of the route. It must always appear for this
view function to be called.

I <name> is the dynamic part of the route. It may change on each
request, or even be absent

I <name> matches any text that appears after the static part of the
route up to the next forward slash

Stop your hello_flask.py application with CTRL-C and restart it (if
necessary), and visit http://localhost:5000/user/Lionel

7 / 12

http://localhost:5000/user/Lionel

Jinja2 Templates

In the previous examples our view functions returned strings that we
generated directly in the functions. It’s cleaner to use a template engine.

I A template is a text file that has placeholders for data to be inserted
I Rendering is the process of replacing the placeholders in a template

with values
I Flask uses the Jinja2 template engine
I By default, Flask looks for templates in a subdirectory named

templates

Download hello_jinja2.py and the templates directory.

8 / 12

http://jinja.pocoo.org/
../code/web/hello_jinja2.py

Template Variables

Here’s a simple template (templates/user.html.jinja2):
<html>
<head>
<title>Hello, {{name}}</title>

<body>
<h1>Hello, {{name}}</h1>

</body>
</html>

And a view function that renders it:
@app.route(’/user/<username>’)
def user(username):

return render_template(’user.html.jinja2’, name=username)

I Keyword arguments to render_template specify key-value pairs for
substitution in the template

I In this example, every instance of the variable {{name}} in the
template is replaced with the value of username from the view
function

9 / 12

../code/web/templates/user.html.jinja2

Control Structures in Templates

Jinja2 supports control structures such as if statements:
{% if user %}
Hello, {{ user }}!

{% else %}
Hello, Stranger!

{% endif %}

and for loops:

{% for comment in comments %}
{{ comment }}

{% endfor %}

10 / 12

Complete Example: Gradebook

Download the files and subdirectories in gradebook.

I In grades.py the gradebook() view function parses a CSV file
from the local file system and passes data to the
grades.html.jinja2 template

@app.route("/grades/<course>/<term>")

def gradebook(course, term):
file_name = course + term + ".csv"
rows = []
with open(file_name, "r") as fin:

reader = csv.reader(fin)
for record in reader:

rows.append(record)
return render_template("grades.html.jinja2",

course=course, term=term, rows=rows)

I grades.html.jinja2 uses nested for loops to populate an HTML
table.

Take a look at the grades.html.jinjs2 template. How would it look if
we used a csv.DictReader?

11 / 12

Closing Thoughts

I Tons more to know about web applications
I You know enough to make simple, yet useful web applications
I You have a big head start for CS 4400

12 / 12

	Flask

