
Functions

CS1 Python

1 / 27

Functions

A function is a reusable block of code. Functions

I have names (usually),
I contain a sequence of statements, and
I return values, either explicitly or implicitly.

We’ve already used several built-in functions. Today we will learn
how to define our own.

2 / 27

Hello, Functions!

We define a function using the def keyword:
1 >>> def say_hello():
2 ... print('Hello')
3 ...

(blank line tells Python shell you’re finished defining the function)

Once the function is defined, you can call it:
1 >>> say_hello()
2 Hello

3 / 27

Defining Functions

The general form of a function definition is
1 def <function_name>(<parameter_list>):
2 <function_body>

I The first line is called the header.
I function_name is the name you use to call the function.
I parameter_list is a list of parameters to the function, which may

be empty.
I function_body is a sequence of expressions and statements.

4 / 27

Function Parameters
Provide a list of parameter names inside the parentheses of the
function header, which creates local variables in the function.

1 >>> def say_hello(greeting):
2 ... print(greeting)
3 ...

Then call the function by passing arguments to the function: values
that are bound to parameter names.

Here we pass the value ‘Hello’, which is bound to say_hello’s
parameter greeting and printed to the console by the code inside
say_hello.

1 >>> say_hello('Hello')
2 Hello

Here we pass the value ‘Guten Tag!’:
1 >>> say_hello('Guten Tag!')
2 Guten Tag!

5 / 27

Variable Scope

Parameters are local variables. They are not visible outside the
function:

1 >>> greeting
2 Traceback (most recent call last):
3 File "<stdin>", line 1, in <module>
4 NameError: name 'greeting' is not defined

Global variables are visible outside the function and inside the
function.

1 >>> global_hello = 'Bonjour'
2 >>> global_hello
3 'Bonjour'
4 >>> def say_global_hello():
5 ... print(global_hello)
6 ...
7 >>> say_global_hello()
8 Bonjour

6 / 27

Shadowing Global Variables
Local variables shadow global variables.

1 >>> x = 1
2 >>> def f():
3 ... x = 2
4 ... print("local x:", x)
5 ... print("global x:", globals()["x"])
6 ...
7 >>> f()
8 local x: 2
9 global x: 1

I Tip: evaluate globals()["__name__"] in the Python REPL.

A function parameter is a local variable.
1 >>> greeting = 'Hi ya!'
2 >>> def greet(greeting):
3 ... print(greeting)
4 ...
5 >>> greeting
6 'Hi ya!'
7 >>> greet('Hello')
8 Hello

7 / 27

Namespaces

Every place where a variable can be defined is called a namespace or
a frame (sometimes also called a symbol table, which is how
namespaces are implemented by compilers and interpreters).

I Top level, or global names (either the Python REPL or a script)
are in a namespace called __main__.

I Each function call also gets a namespace for the local variables
in the function.

I These namespaces are hierarchical – name resolution starts
with the innermost namespace, which is why local variables
“hide” or “shadow” global variables.

8 / 27

Memory Model With Function Calls

!dot(func-mem-model.png)()
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ digraph
func_mem_model { subgraph main { x -> 1; y -> 2; subgraph fun
{ x -> 3; } } }
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

9 / 27

Redefining Names

A function a kind of variable. If you define a function with the same
name as a variable, it re-binds the name, and vice-versa.

1 >>> global_hello = 'Bonjour'
2 >>> def global_hello():
3 ... print('This is the global_hello() function.')
4 ...
5 >>> global_hello
6 <function global_hello at 0x10063b620>

10 / 27

Python Scope Gotchas

Python has notoriously weird scoping rules.

11 / 27

Muliple Parameters

A function can take any number of parameters.
1 >>> def greet(name, greeting):
2 ... print(greeting + ', ' + name)
3 ...
4 >>> greet('Professor Falken', 'Greetings')
5 Greetings, Professor Falken

Parameters can be of multiple types.
1 >>> def greet(name, greeting, number):
2 ... print(greeting * number + ', ' + name)
3 ...
4 >>> greet('Professor Falken', 'Greetings', 2)
5 GreetingsGreetings, Professor Falken

12 / 27

Positional and Keyword Arguments

Thus far we’ve called functions using positional arguments, meaning
that argument values are bound to parameters in the order in which
they appear in the call.

1 >>> def greet(name, greeting, number):
2 ... print(greeting * number + ', ' + name)
3 ...
4 >>> greet('Professor Falken', 'Greetings', 2)

We can also call functions with keyword arguments in any order.
1 >>> greet(greeting='Hello', number=2, name='Dolly')
2 HelloHello, Dolly

If you call a function with both positional and keyword arguments,
the positional ones must come first.

13 / 27

Default Parameter Values

You can specify default parameter values so that you don’t have to
provide an argument.

1 >>> def greet(name, greeting='Hello'):
2 ... print(greeting + ', ' + name)
3 ...
4 >>> greet('Elmo')
5 Hello, Elmo

If you provide an argument for a parameter with a default value, the
parameter takes the argument value passed in the call instead of the
default value.

1 >>> greet('Elmo', 'Hi')
2 Hi, Elmo

14 / 27

Return Values
Functions return values.

1 >>> def double(num):
2 ... return num * 2
3 ...
4 >>> double(2)
5 4

If you don’t explicitly return a value, None is returned implicitly.
1 >>> def g():
2 ... print("man") # This is not a return!
3 ...
4 >>> fbi = g()
5 man # This is a side-effect of calling g(), not a return value
6 >>> type(fbi)
7 <class 'NoneType'>

Function calls are expressions like any other, that is, a function call
has a value, so a function call can appear anywhere a value can
appear.

1 >>> double(2) + double(3)
2 10

15 / 27

Function Design Recipe
1. Examples

I What a few representative calls to the function look like in the
Python REPL.

I Think from the function user’s perspective.
I Examples become doctests in the function’s docstring.

2. Header
I Parameter names and types
I Return type

3. Description
I Short paragraph (1 or 2 sentences) describing the function’s

behavior.
4. Body

I Implement the algorithm (sequence of statements) that
accomplishes the function’s task, deriving the function’s output
(return value) and/or effect from the the function’s inputs
(arguments).

5. Test
I Test your function on some representative inputs (try to include

edge cases).
16 / 27

Writing Function Examples
Let’s apply this design recipe in the creation of a simple function to
calculate the length of the hypotenuse from the lengths of the two
legs (the sides that join in a right angle).

First, decide the name of the function.

I Descriptive word(s)
I Verbs may imply an imperative function called for its effect, not

a return value
I print("hello"), exit()

I Nouns may imply a pure function, a return value derived only
from the function’s arguments with no side effects

I type(1), double(2)
I Avoid Python keywords or names of library functions.

I Tip:
1 >>> import keyword
2 >>> keyword.kwlist # lists all the Python keywords
3 >>> keyword.iskeyword("foo") # True if "foo" is a keyword

I Follow Python’s naming conventions.
17 / 27

https://www.python.org/dev/peps/pep-0008/

Hypotenuse Function Examples
We’ll name our function hypotenuse. General naming tips:

I Only abbreviate if abbreviation is well-known or obvious
I If you must, form a new abbreviation by eliminating vowels

starting from the right, e.g., format → formt → fmt
I Some abbreviations are idiomatic, e.g., i as an loop variable

used as an int index
I Length of the name should be inversely proportional to its

scope
I Local variables can be short
I Modules, functions, and classes should have more descriptive

names

Our examples:
1 >>> hypotenuse(3, 4)
2 5
3 >>> hypotenuse(5, 12)
4 13

18 / 27

Function Headers

The function header includes the function’s name and parameter
names. We add a type contract, which we document using Python’s
new (as of 3.5) type hints feature. Here are a few basic types. A
full explanation is in PEP 484, including a complete list of types in
the typing module
I int
I float
I str

I List[int]
I Tuple[float]
I Dict[str, int]

19 / 27

https://docs.python.org/3/library/typing.html
https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0484/#the-typing-module
https://www.python.org/dev/peps/pep-0484/#the-typing-module

Hypotenuse Function Header

Deciding on the type contract of hypotenuse:

I The sides of a triangle are measured with numbers. What kind
of numbers, ints, floats?

I The return value is also a number. Is the return type the same
type as the parameters?

Since integer values can be represented as floats, we settle on the
this:

1 def hypotenuse(a: float, b: float) -> float:

The type contract says: if you pass two values of type float in your
call to hypotenuse, the function will return a value of type float.

20 / 27

Hypotenuse Function Description
The function description states what the functions does. We place
this description in the function’s docstring. Any string that occurs
as the first item in the definition of a module, function, class, or
method is a docstring. By convention we use triple double quotes
for docstrings.

1 def hypotenuse(a: float, b: float) -> float:
2 """Take the lengths of the two legs, a and b, of a right triangle
3 and return the length of the hypotenuse.
4 """

This incomplete but legal version of the function returns None

because it doesn’t have a return statement.

I Tip: We can stub the function with a return statement that
returns a dummy value, like 0.0, so code that uses our function
will work but produce incorrect results. That way we can get
the “plumbing” of our program working before filling in the
details of the functions.

21 / 27

https://www.python.org/dev/peps/pep-0257/

Designing a Function Body

The function body implements an algorithm that produces the
functions output (or effect) based on the function’s inputs. The
algorithm for calculating a hypotenuse is:

1. Square leg a

2. Square leg b

3. Sum the squares
4. Take the square root of the sum of the squares.

The last step produces the final result.

Later in the course will learn how to design algorithms. FOr now we
can think of algorithm design intuitively.

The next slide shows the algorithm above translated to Python code.

22 / 27

Hypotenuse Function Body

1 import math
2
3 def hypotenuse(a: float, b: float) -> float:
4 """Take the lengths of the two legs, a and b, of a right triangle
5 and return the length of the hypotenuse.
6 """
7 a2 = a * a
8 b2 = b * b
9 sum_squares = a2 + b2

10 result = math.sqrt(sum_squares)
11 return result

Of course this function can be shortened, but this version shows
every detail.

23 / 27

Testing the Hypotenuse Function
We can test our function manually in the REPL or by adding
example functions calls to a script. We should also add the examples
we created in step 1 of the function design recipe to the docstring.

1 import math
2
3 def hypotenuse(a: float, b: float) -> float:
4 """Take the lengths of the two legs, a and b, of a right triangle
5 and return the length of the hypotenuse.
6
7 >>> hypotenuse(3, 4)
8 5
9 >>> hypotenuse(5, 12)

10 13
11 """
12 a2 = a * a
13 b2 = b * b
14 sum_squares = a2 + b2
15 result = math.sqrt(sum_squares)
16 return result

If we do this then we get automated testing for free with doctest.

24 / 27

https://docs.python.org/3/library/doctest.html

Advanced Python Function Features

25 / 27

Variable Argument Lists

You can collect a variable number of positional arguments as a tuple
by preprending a parameter name with *

1 >>> def echo(*args):
2 ... print(args)
3 ...
4 >>> echo(1, 'fish', 2, 'fish')
5 (1, 'fish', 2, 'fish')

You can collect variable keyword arguments as a dictionary with **

1 >>> def print_dict(**kwargs):
2 ... print(kwargs)
3 ...
4 >>> print_dict(a=1, steak='sauce')
5 {'a': 1, 'steak': 'sauce'}

26 / 27

Inner Functions
Information hiding is a general principle of software engineering. If
you only need a function in one place, inside another function, you
can declare it inside that function so that it is visible only in that
function.

1 >>> def factorial(n):
2 ... def fac_iter(n, accum):
3 ... if n <= 1:
4 ... return accum
5 ... return fac_iter(n - 1, n * accum)
6 ... return fac_iter(n, 1)
7 ...
8 >>> factorial(5)
9 120

fac_iter() is a (tail) recursive function. Recursion is important for
computer scientists, but a practically-oriented Python-programming
engineer will mostly use iteration, higher-order functions and loops,
which are more Pythonic. Any recursive computation can be
formulated as an imperative computation.

27 / 27

http://neopythonic.blogspot.com/2009/04/tail-recursion-elimination.html

	Advanced Python Function Features

