
Algorithm Design

1 / 14



Computational Problems

An input-output specification

I Given some input satisfying some constraints,
I return some output that guarantees some conditions.

Example: find_max

I Given a list of numbers,
I return a number from the list which is greater than or equal to

any number in the list.

2 / 14



Algorithms

An algorithm is a sequence of operations that accomplishes a task,
or solves a computational problem. We demand that an algorithm
be

I correct – if the algorithm’s input satisfies the algorithm’s
assumptions, the algorithm always produces correct output –

and want an algorithm to be

I efficient – the algorithm uses the least amount of resources
necessary to accomplish its task.

Today we’ll learn how to design algorithms to solve computational
problems and reason about the correctness of those algorithms.

3 / 14



Review: Function Design Recipe

1. Examples – name of function, example function calls and
return values

2. Header – parameter names and types, return type
3. Description – to put in docstring
4. Body – implement the algorithm that transforms the function’s

input – parameters – to the functions output (or effect) – the
return value

5. Test – call the function with argument values that test edge
cases and execute each path of execution in the function

Let’s apply this function design recipe and design an algorithm to
solve the find_max problem.

4 / 14



find_max Examples

1 >>> find_max([1,2,3,6,5,4])
2 6

5 / 14



find_max Header

1 def find_max(L: List[int]) -> int:

6 / 14



find_max Description

1 def find_max(L: List[int]) -> int:
2 """Takes a list of integers and returns the largest of the integers
3 """

7 / 14



find_max Body

Here’s where we design our algorithm. We’ll use a top-down
approach:

1. Describe solution in English
2. Translate steps that are specific enough to implement in

Python statments into Python
3. Rewrite steps still described in English in more detail until each

step can be translated into a Python statement

We’ll start by writing our English-language version of the algorithm
in the body of the function as Python comments.

8 / 14



find_max ALgorithm in English

1 def find_max(L: List[int]) -> int:
2 """Takes a list of integers and returns the largest of the integers
3 """
4 # Store the first element of the list as our current guess
5 # Look at the remaining elements of the list, replacing our guess

with
6 # elements of the list that are larger than the current guess.
7 # After we look at each element of the list, the guess will contain
8 # the largest value in the list.

9 / 14



Design Pattern - Exhaustive Search

Our find_max algorithm is an instance of a general algorithm design
pattern: exhaustive search:

10 / 14



Proving Algorithms Correct

Computer scientists prove the correctness of their algorithms. In
practice, working programmers only informally reason about the
correctness of their algorithms, but the techniques used in formal
correctness proofs are useful intellectual tools for all programmers.
Here we demonstrate the use of one tool: loop invariants.

A loop invariant expresses a formal property of an algorithm that:

I is true prior to the first iteration of the loop,
I if it is true before an iteration of the loop remains true before

the next iteration, and
I upon loop termination gives a useful property that helps show

that the algorithm is correct.

11 / 14



A Loop Invariant for find_max

At the start of each loop, max_element is greater than or equal to
each element in L[0:i], where i ranges from 0 to len(L) - 1.

I Since i = 0 prior to the first iteration of the loop,
max_element > L[0:i].

I Since max_element is assigned to L[i] if L[i] is greater than
max_element, max_element > L[0:i] remains true before the next
iteration.

I Upon loop termination i is the last valid index for L, so
max_element is greater than or equal to all the elements of L

Most algorithms contain some sort of loop (or recursion, which is
equivalent), so reasoning about algorithm correctness using loop
invariants is useful.

12 / 14



Design Pattern - Generate and Test

1. Generate a guess of the correct result
2. Test the guess
3. Loop until the correct result is found or the possibilities are

exhausted

13 / 14



Newton’s Square Root Algorithm

14 / 14


