
Algorithm Analysis

1 / 8



Algorithm Analysis

An algorithm is a sequence of operations that accomplishes a task,
or solves a problem. We demand that an algorithm be

▶ correct – if the algorithm’s input satisfies the algorithm’s
assumptions, the algorithm always produces correct output –

and want an algorithm to be
▶ efficient – the algorithm uses the least amount of resources

necessary to accomplish its task.

Today we’ll learn how to analyze the efficiency of an algorithm in
the context of two fundamental problems in computation:
searching and sorting.

2 / 8



The Search Problem

The search problem is defined formally by the following
input-output specifications:

▶ Input: A sequence of n elements A =< a1, a2, …, an > and a
value v

▶ Output: An index i such that v = A[i], or a special value such
as -1 or nil if v does not appear in A.

We’ll see that the assumptions we can make about the input
affects the efficiency of the algorithms we can use to search it.

3 / 8



Linear Search

If we can make no assumptions about the order of the array, our
only option is linear search:

1 # A is an array, and v is the value ’were searching for
2 LINEAR-SEARCH(A, v):
3 for i = 1 to A.length
4 if A[i] = v then
5 return i
6 return -1

Exercise: implement this algorithm in Python

4 / 8



Algorithmic Efficiency

We can characterize algorithmic efficiency in terms of space
complexity (how much storage an algorithm requires) or time
complexity (how “fast” an algorithm runs). Almost always
primarily concerned with time complexity.

▶ Note that we want to eliminate platform-specific factors, like
speed of the particular computer an algorithm runs on. So we
characterize algorithm performance in terms of

▶ input size, n, and
▶ order of growth as a function of input size.

An efficient algorithm beats an inefficient one even if the inefficient
algortithm is run on a far superior computer.

5 / 8



Efficiency of Linear Search
Assuming each operation has a fixed cost, we can count the
operations performed for a worst-case input as follows:

Step Cost Times
for i= 1to A.length 𝑐1 n
if A[i] = v then 𝑐2 n
return i 𝑐3 0
return -1 𝑐4 1

Adding up the number of times each statement is executed we get:
𝑇 (𝑛) = 𝑐1𝑛 + 𝑐2𝑛 + 𝑐4 = (𝑐1 + 𝑐2)𝑛 + 𝑐4

We discard constant terms, constant factors, and lower-order terms
to say that the worst case running time is

O(n)

And pronounce this “order n” or “Big-O of n.”
6 / 8



Binary Search
If the array is sorted you can use a binary search:

1 BINARY-SEARCH(A, v):
2 p := 1, r := A.length
3 while p �r
4 q := �(p+r)�/2
5 if A[q] = v then
6 return q
7 if A[q] > v then
8 r := q - 1
9 else

10 p=q+1
11 return -1

Intuitively: We check the midpoint of the array (q). - If the array
is empty (p > r), the query value was not found. - If the midpoint
holds the value, return the midpoint. - If the midpoint holds a
value greater than our search value, repeat the process with the
lower half of the array. - If the midpoint holds a value less than our
search value, repeat the process with the upper half of the array.

7 / 8



Efficiency of Binary Search

The key to analyzing the efficiency of BINARY-SEARCH is
realizing that the array is halved in each iteration of the while loop.
- In the worst case BINARY-SEARCH runs until the size of the
array (r − p) goes from n to 1 by successive halving. - This is
equivalent to going from 1 to n by successive doubling. Counting
the number of times x we need to double to get from 1 to n is

2𝑥 = 𝑛
so

𝑥 = 𝑙𝑔𝑛
and the worst-case running time of BINARY-SEARCH is 𝑂(lg 𝑛)

8 / 8


