CS 2316 Exam 1 Practice

ANSWER KEY

- Signing signifies you are aware of and in accordance with the **Academic Honor Code of Georgia Tech**.
- \bullet Calculators and cell phones are NOT allowed.
- This is a Python programming test. Where asked for Python statements or expressions you must print them exactly as they would be typed in a Python source file or interactive shell.

Question	Points per Page	Points Lost	Points Earned	Graded By
Page 1	0	-	=	
Page 2	0	-	=	
Page 3	0	-	=	
Page 4	0	-	=	
Page 5	0	-	=	
Page 6	0	-	=	
Page 7	0	-	=	
Page 8	0	-	=	
TOTAL	72	-	=	

1. True or False

In each of the blanks below, write "T" if the statement beside the blank is true, "F" otherwise.

- [1] (a) <u>T</u> Every Python value has a type such as float or int.
- [1] (b) $\underline{\mathbf{F}}$ Python variables are statically typed, meaning that once you assign a value to a variable you can only assign new values of the same type. For example, after x = 3.14 you can only assign float values to x.
- [1] (c) <u>F</u> The + operator means the same for str values as it does for int values.
- [1] (d) <u>F</u> try = try + 1 # increment the number of tries is a valid Python statement.

2. Expression Evaluation

For each expression below, write the value and then the Python data type of the evaluated legal expression in the space provided. Be exact.

Expression: 7 / 2

- [1] (a) Calculated value: <u>3.5</u>
- [1] (b) Type: <u>float</u>

Expression: 64 - 16 * 2

- [1] (c) Calculated value: <u>32</u>
- [1] (d) Type: <u>int</u>

Expression: 'Ni' * 3

- [1] (e) Calculated value: <u>'NiNiNi'</u>
- [1] (f) Type: <u>str</u>

Expression: 1 // 2

- [1] (g) Calculated value: <u>0</u>
- [1] (h) Type: <u>int</u>

Expression: True and (1 == 2)

- [1] (i) Calculated value: <u>False</u>
- [1] (j) Type: <u>bool</u>

- 3. Multiple Choice Circle the letter of the correct choice.
- [2] (a) Given the following code:

```
capitals = {}
capitals['Murica'] = 'Warshington'
capitals['Germany'] = 'Bonn'
capitals['France'] = 'Paris'
capitals['Engalnd'] = 'London'
capitals['Germany'] = 'Berlin'
```

What is capitals ['Germany']?

- A. 'Berlin'
- B. 'Sweden'
- C. 'Paris'
- D. 'London'
- [2] (b) What is len(set(['A', 'b', 'b', 'a']))
 - A. 2
 - B. 3
 - C. 4
 - D. 0
- [2] (c) What is wrong with this code:

```
n = 5
while n > 0:
    print(n)
n -= 1
```

- A. The variable n is declared outside the scope of the while loop.
- B. The while loop never finishes.
- C. The variable n is the wrong type.
- D. There is nothing wrong with this code.
- [2] (d) What's the value of the expression ''.join('h a n d s'.split())
 - A. 'hands'
 - B. 'h a n d s'
 - C. ['h', 'a', 'n', 'd', 's']
 - D. None

4. Tracing

Consider the following program:

```
counter = 0;

def incrementCounter():
    global counter
    counter += 1
    return True

if __name__ == '__main__':
    a = True
    b = False;
    if b or incrementCounter():
        print("Boo")
    if (a or b) and incrementCounter():
        print("ya!")
    print(counter)
```

[5] (a) What is printed when this program is run from the command line?

```
Solution: Boo
ya!
2
```

Consider the following program:

```
mystery = "mnerigpaba"
solved = ""
for i in range(len(mystery) // 2):
    j = -i - 1
    solved += mystery[i] + mystery[j]
print(solved)
```

[5] (b) What is printed when this program is run from the command line?

```
Solution: manbearpig
```

5.	Short	Answer

[2] (a) What is the value of "abcdefg" [::-1]

```
Solution:
'gfedcba'
```

[2] (b) Write a list comprehension that returns a list of the first 5 squares where the first square is 1.

```
Solution:
[x * x for x in range(1, 6)]
```

[2] (c) Write an expression that computes the average of a list of numbers nums.

```
Solution:
sum(nums) / len(nums)
```

[2] (d) Make the dictionary variable, e2f, that contains mappings from English words to their French equivalents. Use these words: dog is chien, cat is chat, and walrus is morse.

```
Solution:
e2f = {'dog': 'chien', 'cat': 'chat', 'walrus': 'morse'}
```

[2] (e) Write a dictionary comprehension that converts e2f to a dictionary from French words to their english equivalents and assigns this new dictionary to a variable f2e

```
Solution:
f2e = {f: e for e, f in e2f.items()}
```

6. Complete the Method

Page 6 of 8

[5] (a) Fill in the code for the following method that takes a list of numbers and returns the number of even numbers in list argument. Your code should use a for statement.

def evens(nums):

```
Solution:
    count = 0
    for num in nums:
        if num % 2 == 0:
            count += 1
    return count
```

(b) Fill in the code for the following method that takes a list of numbers and a number and returns True if the list contains the number, False otherwise. You will need a loop, and your loop must not execute more iterations than necessary, and you cannot use break or continue or the in operator. def contains(nums, n):

// Your code goes here

```
Solution:
   found = False
   i = 0
   while i < len(nums) and not found:
       if nums[i] == n:
            found = True
       i += 1
   return found</pre>
```

- 7. Write the method. Assume valid input.
- [10] (a) Given a $m \times n$ matrix **A**:

$$\mathbf{A} = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \cdots & A_{mn} \end{bmatrix}$$

The transpose \mathbf{A}^T is defined as: $\left[\mathbf{A}^T\right]_{ji} = \left[\mathbf{A}\right]_{ij}$. Think "the rows of a matrix are the columns of its transpose." One way to represent matrices in Python is as a list of lists, for example:

```
m = [
    [1, 2, 3],
    [4, 5, 6]
]
```

Write a method transpose that takes a single parameter m representing a 2-dimensional matrix as a list of lists and returns its transpose as a list of lists. Hint: it's possible to do this in one line, but you may use for statements instead.

```
def transpose(m):
    mt = [[0] * len(m) for column in m[0]]
    for row in range(len(m)):
        for column in range(len(m[row])):
            mt[column] [row] = m[row] [column]
    return mt

def transpose2(m):
    return [[row[i] for row in m] for i in range(len(m[0]))]

def transpose3(m):
    return [list(row) for row in zip(*m)]
```

- [5] (a) Write a class Person with three instance variables: name, age, and email and two methods:
 - is_senior(), which returns True if the Person instance's age is greater than 59, and
 - user_name(), which returns the user name portion of the instance's email, that is, the part before the @ symbol.

```
class Person():
    def __init__(self, name, age, email):
        self.name = name
        self.age = age
        self.email = email

def is_senior(self):
        return self.age > 59

def user_name(self):
        return self.email.split('@')[0]
```

[5] (b) Write function, oldest, that takes a variable number of Person (from previous question) parameters (that is, a variable number of single Person objects) and returns the oldest Person among the arguments. Assume oldest is always called with at least one argument.

```
def oldest(*persons):
    return sorted(persons, key=lambda p: p.age)[-1]
```