CS 4400 Exam2

Practice

Name:	
GT account (gtg, gth, msmith3, etc):	Section (e.g., B1):

Signature: ____

- Failure to properly fill in the information on this page will result in a deduction of up to 4 points from your exam score.
- Signing signifies that you agree to comply with the Academic Honor Code of Georgia Tech.
- Calculators and cell phones are NOT allowed.

Completely fill in the box corresponding to your answer choice for each question.

1.	[A]	[B]	[C]	[D]
2.	[A]	[B]	[C]	[D]
3.	[A]	[B]	[C]	[D]
4.	[A]	[B]	[C]	[D]
5.	[A]	[B]	[C]	[D]
6.	[A]	[B]	[C]	[D]
7.	[A]	[B]	[C]	[D]
8.	[A]	[B]	[C]	[D]
9.	[A]	[B]	[C]	[D]
10.	[A]	[B]	[C]	[D]
11.	[A]	[B]	[C]	[D]
12.	[A]	[B]	[C]	[D]
13.	[A]	[B]	[C]	[D]
14.	[A]	[B]	[C]	[D]
15.	[A]	[B]	[C]	[D]
16.	[A]	[B]	[C]	[D]
17.	[A]	[B]	[C]	[D]
18.	[A]	[B]	[C]	[D]
19.	[A]	[B]	[C]	[D]
20.	[A]	[B]	[C]	[D]
21.	[A]	[B]	[C]	[D]
22.	[A]	[B]	[C]	[D]
23.	[A]	[B]	[C]	[D]
24.	[A]	[B]	[C]	[D]
25.	[A]	[B]	[C]	[D]

Pubs Database Schema

author(<u>author_id</u>, first_name, last_name)

 $author_pub(\underline{author_id}, pub_id, author_position)$

book(book_id, book_title, month, year, editor)

 $pub(pub_id, title, book_id)$

- *author_id* in *author_pub* is a foreign key referencing *author*
- *pub_id* in *author_pub* is a foreign key referencing *pub*
- $book_id$ in pub is a foreign key referencing book
- *editor* in *book* is a foreign key referencing *author(author_id)*
- Primary keys are underlined

Pubs Database State

r(author)

author_id	first_name	last_name
1	John	McCarthy
2	Dennis	Ritchie
3	Ken	Thompson
4	Claude	Shannon
5	Alan	Turing
6	Alonzo	Church
7	Perry	White
8	Moshe	Vardi
9	Roy	Batty

author_id	pub_id	author_position
1	1	1
2	2	1
3	2	2
4	3	1
5	4	1
5	5	1
6	6	1

 $r(author_pub)$

r(book)

r(book)					r(pub)		
book_id	book_title	month	year	editor	pub_id	title	book_id
1	CACM	April	1960	8	1	LISP	1
2	CACM	July	1974	8	2	Unix	2
3	BST	July	1948	2	3	Info Theory	3
4	LMS	November	1936	7	4	Turing Machines	4
5	Mind	October	1950	NULL	5	Turing Test	5
6	AMS	Month	1941	NULL	6	Lambda Calculus	6
7	AAAI	July	2012	9			
8	NIPS	July	2012	9			

Figure 1: Relational Database Schema

Name:	GTAccount:	 Section:
	_	

Scratch page

- [4] 1. Which of the following statements is true with regard to the relational data model?
 - A. A domain for an attribute is a set of atomic values.
 - B. Several attributes in one relation schema may have the same domain.
 - C. A tuple in a relation consists of one value from each attribute domain of that relation.
 - D. All of the above
- [4] 2. Which of the following is the mathematical definition of a relation, r(R), of degree n?
 - A. $r(R) \subseteq dom(A_1) \times dom(A_2) \times \dots \times dom(A_n)$
 - B. $r(R) \subseteq dom(A_1) \cap dom(A_2) \cap \ldots \cap dom(A_n)$
 - C. $r(R) \subseteq dom(A_1) \cup dom(A_2) \cup \ldots \cup dom(A_n)$
 - D. none of the above
- [4] 3. Which of the following are properties of the relational model?
 - A. Attribute values in tuples are indivisible.
 - B. Facts not asserted explicitly are assumed to be false.
 - C. Relations are sets.
 - D. All of the above.
- [4] 4. Which of the following is true about a minimal superkey?
 - A. There can be only one.
 - B. The default superkey is always a minimal superkey.
 - C. Every minimal superkey is a primary key.
 - D. Every superkey contains a minimal superkey as a subset.
- [4] 5. In a relation schema with 3 attributes, each of which is a candidate key, how many superkeys are there?
 - A. 1
 - B. 3
 - C. 6
 - D. 7
- [4] 6. In a relation schema with 3 attributes, each of which is a candidate key, how many choices are there for the primary key?
 - A. 1
 - B. 3
 - C. 6
 - D. 7

[4] 7. May a tuple in a relation have a NULL value for a foreign key attribute?

- A. Yes
- B. No
- [4] 8. May a tuple in a relation have a NULL value for a primary key attribute?
 - A. Yes
 - B. No
- [4] 9. Which kind of constraint cannot be specied in the relational model?
 - A. referential integrity constraints
 - B. semantic constraints, a.k.a., business rules
 - C. entity integrity constraints
- [4] 10. Meow!
 - A. True

Section:

Refer to database schema in Figure 1 for the remaining questions.

- [4] 11. What is the degree of the *author* relation?
 - A. 2
 - B. 3
 - C. 9
- [4] 12. The *author_pub* relation has how many superkeys?
 - A. 1
 - B. 2
 - C. 3
- [4] 13. Can the tuple <6, 'Teen', 'Candles'> be inserted into the author relation without causing an integrity violation?
 - A. Yes
 - B. No
- [4] 14. Can the tuple <10, NULL, 'Pointers'> be inserted into the author relation without causing an integrity violation?
 - A. Yes
 - B. No
- [4] 15. The deletion of the second tuple in the *author* relation (<2, 'Dennis', 'Ritchie'>) causes an integrity violation for which relations?
 - A. author_pub
 - B. book
 - C. pub
 - D. A and B above.
- [4] 16. If cascading deletes is in effect for all relations and the tuple <2, 'Dennis', 'Ritchie'> is deleted, how many other tuples will be deleted from the database?
 - A. 0
 - B. 2
 - C. 3
- [4] 17. How many tuples will be returned by the following relational algebra query?

$\pi_{book_title}(book)$

A. 7
B. 5
C. 2
D. 1

Section:

[4] 18. What question does the following expression answer?

 $|\pi_{author_id}(author) - \pi_{editor}(book)|$

- A. How many authors are book editors.
- B. How many authors are not book editors.
- C. What are the names of the authors who are book editors.
- D. What are the names of the authors who are not book editors.
- [4] 19. Which of the following relational algebra expressions returns the names of all authors who are book editors?
 - A. $\pi_{first_name,last_name}((\pi_{author_id}(author) \pi_{editor}(book)) * author)$
 - B. $\pi_{first_name, last_name}(author \bowtie_{author_id=editor} book)$
 - C. $\pi_{first_name,last_name}(author * author_pub)$
- [4] 20. Which of the following relational algebra expressions returns the names of all authors who are not book editors?
 - A. $\pi_{first_name,last_name}((\pi_{author_id}(author) \pi_{editor}(book)) * author)$
 - B. $\pi_{first_name, last_name}(author \bowtie_{author_id=editor} book)$
 - C. $\pi_{first_name,last_name}(author * author_pub)$
- [4] 21. Which of the following relational algebra expressions returns the names of all authors who have at least one publication in the database?
 - A. $\pi_{first_name,last_name}((\pi_{author_id}(author) \pi_{editor}(book)) * author)$
 - B. $\pi_{first_name,last_name}(author \bowtie_{author_id=editor} book)$
 - C. $\pi_{first_name,last_name}(author * author_pub)$
- [4] 22. Which of the following relational algebra expressions returns books that were published before 1960 or after 2000?
 - A. $\sigma_{year < 1960}(book) \wedge \sigma_{year > 2000}(book)$
 - B. $\sigma_{year < 1960}(book) \cup \sigma_{year > 2000}(book)$
 - C. $\sigma_{year < 1960 \land year > 2000}(book)$
- [4] 23. How many tuples are returned by the following relational algebra expression?

$author \bowtie_{author_id=editor} book$

- A. 8B. 11
- C. 13
- [4] 24. What question does the following relational algebra expression answer?

 $author * (author_pub * (\sigma_{month='July'}(book) * pub))$

- A. Which authors were born in July?
- B. Which authors authored a pub that was published in July?
- C. Which authors edited books that were published in July?

[4] 25. How many tuples does the previous relational algebra expression return?

- A. 1
- B. 2
- C. 3
- D. 4