
CS 2316 Data Manipulation
XML

Christopher Simpkins
chris.simpkins@gatech.edu

mailto:chris.simpkins@gatech.edu

ASE 6121 Information Systems, Lecture 07: XMLCopyright © Georgia Tech. All Rights Reserved. !2

Extensible Markup Language (XML)
 A W3C standard for document

markup
 Used for web pages, data

interchange, configuration files,
remote procedure calls, object
serialization, ...

 All examples in this lecture come
directly from, or are adapted from
O’Reilly’s XML in a Nutshell

XML in a Nutshell, 3ed, Elliotte
Rusty Harold and W. Scott Means

ASE 6121 Information Systems, Lecture 07: XMLCopyright © Georgia Tech. All Rights Reserved.

Benefits of XML
 Human-readable plain text

– Caveat: XML primarily for machines to read and write
 Extensible: XML is a metamarkup language in which

you can define custom tag sets for your domain
– Customized tag sets are called XML applications

 XML tag sets can be designed to represent semantics,
with presentation separated into style sheets

 With a schema or DTD, XML documents can be
machine validated, greatly facilitating interoperability
– Validity includes well-formedness, completeness, data type

consistency
 XML is NOT a programming language

!3

ASE 6121 Information Systems, Lecture 07: XMLCopyright © Georgia Tech. All Rights Reserved.

Simple XML Example
 Elements are marked up with

tags.
 Here, <person> is start tag and
</person> is end tag, which
denote the person element.

 The character data between the
start and end tags are the
element’s content

 Tags are case-sensitive
<person> != <Person>

 An empty person element could
be written <person></
person> or <person/>

!4

This is a simple, yet complete XML
document. It could be stored in a
file called person.xml, or be stored
in a file that contains several XML
documents, or be automatically
generated from a database query.

ASE 6121 Information Systems, Lecture 07: XMLCopyright © Georgia Tech. All Rights Reserved.

XML Tree Structure
 Nesting elements create

a tree structure
 Every XML document

has a document root,
which in this example is
person

 person is the parent of
the name element and
the three profession
elements, which are
children of the person
element

!5

ASE 6121 Information Systems, Lecture 07: XMLCopyright © Georgia Tech. All Rights Reserved.

Mixed Content
 Previous XML

example, and most
we’ll deal with, are
record-like data
structures

 Narrative documents
can also be marked
up with XML, which
is sometimes called
“mixed content”

!6

ASE 6121 Information Systems, Lecture 07: XMLCopyright © Georgia Tech. All Rights Reserved.

XML Attributes
 Information can be

represented as attributes
 Attributes are encoded as
name=”value” pairs in an
element’s start tag

 Model data with elements or
attributes?
– Up to you
– My advice (which is the standard

advice): use elements for your
data, attributes for metadata

– Not often clear what’s data and
what’s metadata

!7

Person data modeled with attributes.

<length units=”cm”>100</length>

units is metadata, so we model it with an attribute.

ASE 6121 Information Systems, Lecture 07: XMLCopyright © Georgia Tech. All Rights Reserved.

XML Names
 Elements and attributes have names
 Names may contain any alphabetic character from

any language, digits, and
– underscores (_)
– hyphens (-)
– periods (.)

 May not contain quotation marks, apostrophes, dollar
signs, carets, percent symbols, and semicolons

 Names must start with underscore or alphabetic
character

Names starting with XML (in any case) are reserved for
W3C XML-related specs

!8

ASE 6121 Information Systems, Lecture 07: XMLCopyright © Georgia Tech. All Rights Reserved.

XML Name Examples
 Acceptable names:

– <Drivers_License_Number>98 NY 32</Drivers_License_Number>!

– <month-day-year>7/23/2001</month-day-year>!

– <_4-lane>I-610</_4-lane>!

– <téléphone>011 33 91 55 27 55 27</téléphone>!

– <πepcha>ΓanhaoNbahob</πepcha>!
 Not acceptable names:

– <Driver's_License_Number>98 NY 32</Driver's_License_Number>!

– <month/day/year>7/23/2001</month/day/year>!

– <first name>Alan</first name>!

– <4-lane>I-610</4-lane>

!9

ASE 6121 Information Systems, Lecture 07: XMLCopyright © Georgia Tech. All Rights Reserved.

Entity References
 Angle brackets (<>) and ampersand (&) are reserved for

XML syntax, so you can’t include these characters in your
character data (element content and attribute values)

 XML provides 5 predefined entity references:
– < The less-than sign, a.k.a. the opening angle bracket (<)
– & The ampersand (&)
– > The greater-than sign, a.k.a. the closing angle bracket (>)
– " The straight, double quotation marks (")
– ' The apostrophe, a.k.a. the straight single quote (')

 Only < and & are strictly necessary, others
provided for symmetry

!10

ASE 6121 Information Systems, Lecture 07: XMLCopyright © Georgia Tech. All Rights Reserved.

Entity Reference Examples

!11

Here, the < symbol in the boolean expression is represented by the < entity reference.

Here, the & symbol in the element content is represented with the & entity reference.

This is equivalent to the second example above. You can use entity references to represent
any Unicode 2.0 code point (38 is ampersand). Note that XML 1.1 will support Unicode 3.0.

ASE 6121 Information Systems, Lecture 07: XMLCopyright © Georgia Tech. All Rights Reserved.

CDATA and Comments
 Sometimes using entity

references can be tedious,
such as when your element
content is an X/HTML code
snippet

 A CDATA section contains
raw character data
surrounded by <![CDATA[
and]]>

 Only character sequence
disallowed in a CDATA
section is]]>

!12

ASE 6121 Information Systems, Lecture 07: XMLCopyright © Georgia Tech. All Rights Reserved.

Processing Instructions
 Enclosed in <? and ?>
 A way to pass

information to a
specific (kind of) XML
processor

 Most common uses:
– embedded

programming language
code

– style sheets

!13

ASE 6121 Information Systems, Lecture 07: XMLCopyright © Georgia Tech. All Rights Reserved.

XML Declaration
 Very beginning of an XML document. Optional, but

should be there
 Example:

– <?xml version="1.0" encoding="ASCII" standalone="yes"?>!

 Three attributes:
– Version should always be 1.0
– Encoding is the character set. Default is UTF-8, which is a

superset of ASCII (so all ASCII text is also UTF-8)
– Standalone says whether the document can be used without

a DTD. Some DTDs provide default values for optional
attributes

 Version attribute is required, encoding and standalone
attributes are optional

!14

ASE 6121 Information Systems, Lecture 07: XMLCopyright © Georgia Tech. All Rights Reserved.

Well-Formedness
 Every start-tag must have a matching end-tag.
 Elements may nest but may not overlap.
 There must be exactly one root element.
 Attribute values must be quoted.
 An element may not have two attributes with the

same name.
 Comments and processing instructions may not

appear inside tags.
 No unescaped < or & signs may occur in the

character data of an element or attribute.
 ... and more.

!15

ASE 6121 Information Systems, Lecture 07: XMLCopyright © Georgia Tech. All Rights Reserved.

Parsing and Validation
 A parser reads an XML document and places it into a structure

for processing (like a tree data structure - slide 5)
 A validating parser can validate an XML document while

parsing it if given an external document that specifies the
structure and content of the XML document

 All XML documents must be well-formed to be parsed, validity
is optional

 Validity means conformance to a:
– Document Type Definition (DTD)
– XML Schema Language document (XSD)
– RelaxNG document
– Schematron document

 DTD and XML schema are most popular. We’ll cover XML
schemas

!16

ASE 6121 Information Systems, Lecture 07: XMLCopyright © Georgia Tech. All Rights Reserved.

Namespaces
 An XML schema or DTD defines a vocabulary for XML

documents, that is, a tag set
 An XML document can include tags from multiple

vocabularies
– Namespaces resolve conflicts between different vocabularies

 Namespaces are identified with URIs in the root
element of an XML document. Example:
– <song xmlns="http://songs.com/singerVocab">

 Namespaces can be given a prefix. Example:
– <song:song xmlns="http://songs.com/singerVocab">
– Then elements in document that use tags from song

vocabulary must be prefixed with song:
!17

ASE 6121 Information Systems, Lecture 07: XMLCopyright © Georgia Tech. All Rights Reserved.

Namespace Example
 In the first example, the

title element name is in
conflict - it comes form
both the singer
vocabulary and the
song vocabulary

 In the second example,
the conflict is resolved
with namespaces

 In the second example,
all elements have
qualified names

!18

ASE 6121 Information Systems, Lecture 07: XMLCopyright © Georgia Tech. All Rights Reserved.

XML Schemas
 An XML Schema is an XML document containing a

formal description of a valid XML document
 An XML document that conforms to a schema is said

to be schema-valid, or simply valid
 A valid XML document is called an instance of its

associated schema

!19

ASE 6121 Information Systems, Lecture 07: XMLCopyright © Georgia Tech. All Rights Reserved.

Associating an XML Document with a Schema
 An XML document is associated with a schema with

one of 3 possible methods in the start tag of its root
element:
– An xsi:schemaLocation attribute on an element contains a

list of namespaces used within that element and the URLs
of the schemas with which to vali- date elements and
attributes in those namespaces.

– An xsi:noNamespaceSchemaLocation attribute contains a
URL for the schema used to validate elements that are not
in any namespace.

– A validating parser may be instructed to validate a given
document against an explicitly provided schema, ignoring
any hints that might be provided within the document itself.

!20

ASE 6121 Information Systems, Lecture 07: XMLCopyright © Georgia Tech. All Rights Reserved.

A Simple XML Schema Example

!21

The schema in address.xsd defines XML documents with one element: name

The document in addresses.xml conforms to the address schema in address.xsd

ASE 6121 Information Systems, Lecture 07: XMLCopyright © Georgia Tech. All Rights Reserved.

Element Declarations
 We’ve already seen a simple element declaration:

– <xs:element name="fullName" type="xs:string">
 The simple types that an element may take are:

– anyURI - A uniform resource identifier
– base64Binary - Base64-encoded binary data
– boolean - true, false, 1, or 0
– byte - A signed byte in the range [-128, 127]
– dateTime - An absolute date and time
– duration - A length of time in years, months, days, hours, etc.
– ID, IDREF, IDREFS, ENTITY, ENTITIES, NOTATION, NMTOKEN, NMTOKENS -

defined in the attribute declaration section of the W3C XML 1.0 recommendation
– integer
– language - Values defined in the xml:lang attribute in the XML 1.0

recommendation
– Name - Any XML name (see slide 8)
– string - A Unicode string

!22

ASE 6121 Information Systems, Lecture 07: XMLCopyright © Georgia Tech. All Rights Reserved.

Attribute Declarations
 Having attributes makes an

element complexType
 Elements with simple

content are declared by
extending a base type, such
as xs:string

 Extension also contains
attribute declarations

 Can still have simple
content, as in the example
to the left

!23

A schema declaration for a fullName
element with a language attribute and

simple content

An XML element conforming to the
schema above

ASE 6121 Information Systems, Lecture 07: XMLCopyright © Georgia Tech. All Rights Reserved.

Complex Types
 Complex types can have

attributes and nested
elements

 Nested elements are
specified as a sequence

 Nested elements can
have occurrence
constraints
– In the example to the left,

middle name is optional
(minOccurs=”0”)

!24

A fullName element consisting of nested
elements for first and last names. Note that
middle name is optional due to minOccurs

constraint of 0

A fullName element conforming to the schema
declaration above

ASE 6121 Information Systems, Lecture 07: XMLCopyright © Georgia Tech. All Rights Reserved.

A Complete Example

!25

person.xsd alanturing.xml

ASE 6121 Information Systems, Lecture 14: Python IO and Database APIsCopyright © Georgia Tech. All Rights Reserved.

XML Parsing
 CSV files are simply structured text-based data files
 XML files are more highly structured text-based data files, allowing

nested, or “tree” structured data to be represented in text
 An XML Parser reads an XML file and extracts its structure. Three

kinds of XML parsers:
– SAX (Simple API for XML): a state machine that produces events for each

element read from an XML file. Parser responds to events to process these
elements

– DOM (Document Object Model): the DOM standard specifies an object-tree
representation of an XML document

» Tip: In Google Chrome you can see the DOM tree of any web page by
clicking View->Developer->Developer Tools in the menu and clicking the
Elements tab in the lower pane. Expand elements of the DOM tree and
cursor over them to see the rendered parts of the page they represent. In
FireFox you can install a plug-in to do the same thing

 We’ll use ElementTree, which is essentially a Python-specific DOM
parser

!26

ASE 6121 Information Systems, Lecture 14: Python IO and Database APIsCopyright © Georgia Tech. All Rights Reserved.

ElementTree
 An ElementTree is a representation of an XML

document as a tree of Element objects with easy to
use methods:
– parse(“fileName”) reads an XML file and create an

ElementTree representation of its document
– find(“elementName”) gets a single child of an element
– findall(“elementName”) gets an iterator over the like-

named children of an element
 That’s it. Really. It’s that simple.

!27

ASE 6121 Information Systems, Lecture 14: Python IO and Database APIsCopyright © Georgia Tech. All Rights Reserved.

A Complete XML Parsing Example

!28

 Say we have an XML file named people.xml
<?xml version="1.0"?>!!
<people>!
 <person>!
 <firstName>Alan</firstName>!
 <lastName>Turing</lastName>!
 <profession>Computer Scientist</profession>!
 </person>!
 <person>!
 <firstName>Stephen</firstName>!
 <lastName>Hawking</lastName>!
 <profession>Physicist</profession>!
 </person>!
</people>

 Our XML document will have a root element named people and
child elements named person

 Each person element will have three child elements named
firstName, lastName, and profession

ASE 6121 Information Systems, Lecture 14: Python IO and Database APIsCopyright © Georgia Tech. All Rights Reserved.

Parsing with ElementTree

!29

 Parsing people.xml with ElementTree is this easy:

>>> import xml.etree.ElementTree as et!
>>> people = et.parse("people.xml")!
>>> persons = people.findall("person")!
>>> for person in persons:!
... print(person.find(“firstName”).text)!
... print(person.find(“lastName”).text)!
... print(person.find(“profession”).text)!
... !
Alan!
Turing!
Computer Scientist!
Stephen!
Hawking!
Physicist!
>>>

ASE 6121 Information Systems, Lecture 07: XMLCopyright © Georgia Tech. All Rights Reserved.

Conclusion
 XML makes a great data format for information

exchange
 Validation is important when passing XML data form

one system to another
 You now know how to write well-formed XML
 You now know how to read a simple XML schema

and write an XML document that conforms to it
 We’ve only introduced XML schemas; there’s much

more to know
 Parsing XML in Python is super easy

!30

